HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  ellnfn Structured version   Visualization version   GIF version

Theorem ellnfn 27960
Description: Property defining a linear functional. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ellnfn (𝑇 ∈ LinFn ↔ (𝑇: ℋ⟶ℂ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧))))
Distinct variable group:   𝑥,𝑦,𝑧,𝑇

Proof of Theorem ellnfn
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 fveq1 6087 . . . . . 6 (𝑡 = 𝑇 → (𝑡‘((𝑥 · 𝑦) + 𝑧)) = (𝑇‘((𝑥 · 𝑦) + 𝑧)))
2 fveq1 6087 . . . . . . . 8 (𝑡 = 𝑇 → (𝑡𝑦) = (𝑇𝑦))
32oveq2d 6543 . . . . . . 7 (𝑡 = 𝑇 → (𝑥 · (𝑡𝑦)) = (𝑥 · (𝑇𝑦)))
4 fveq1 6087 . . . . . . 7 (𝑡 = 𝑇 → (𝑡𝑧) = (𝑇𝑧))
53, 4oveq12d 6545 . . . . . 6 (𝑡 = 𝑇 → ((𝑥 · (𝑡𝑦)) + (𝑡𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧)))
61, 5eqeq12d 2624 . . . . 5 (𝑡 = 𝑇 → ((𝑡‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑡𝑦)) + (𝑡𝑧)) ↔ (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧))))
76ralbidv 2968 . . . 4 (𝑡 = 𝑇 → (∀𝑧 ∈ ℋ (𝑡‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑡𝑦)) + (𝑡𝑧)) ↔ ∀𝑧 ∈ ℋ (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧))))
872ralbidv 2971 . . 3 (𝑡 = 𝑇 → (∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑡‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑡𝑦)) + (𝑡𝑧)) ↔ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧))))
9 df-lnfn 27925 . . 3 LinFn = {𝑡 ∈ (ℂ ↑𝑚 ℋ) ∣ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑡‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑡𝑦)) + (𝑡𝑧))}
108, 9elrab2 3332 . 2 (𝑇 ∈ LinFn ↔ (𝑇 ∈ (ℂ ↑𝑚 ℋ) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧))))
11 cnex 9874 . . . 4 ℂ ∈ V
12 ax-hilex 27074 . . . 4 ℋ ∈ V
1311, 12elmap 7750 . . 3 (𝑇 ∈ (ℂ ↑𝑚 ℋ) ↔ 𝑇: ℋ⟶ℂ)
1413anbi1i 726 . 2 ((𝑇 ∈ (ℂ ↑𝑚 ℋ) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧))) ↔ (𝑇: ℋ⟶ℂ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧))))
1510, 14bitri 262 1 (𝑇 ∈ LinFn ↔ (𝑇: ℋ⟶ℂ ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑇‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑇𝑦)) + (𝑇𝑧))))
Colors of variables: wff setvar class
Syntax hints:  wb 194  wa 382   = wceq 1474  wcel 1976  wral 2895  wf 5786  cfv 5790  (class class class)co 6527  𝑚 cmap 7722  cc 9791   + caddc 9796   · cmul 9798  chil 26994   + cva 26995   · csm 26996  LinFnclf 27029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-cnex 9849  ax-hilex 27074
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ral 2900  df-rex 2901  df-rab 2904  df-v 3174  df-sbc 3402  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-br 4578  df-opab 4638  df-id 4943  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-fv 5798  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-map 7724  df-lnfn 27925
This theorem is referenced by:  lnfnf  27961  lnfnl  28008  bralnfn  28025  0lnfn  28062  cnlnadjlem2  28145
  Copyright terms: Public domain W3C validator