MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en4 Structured version   Visualization version   GIF version

Theorem en4 8756
Description: A set equinumerous to ordinal 4 is a quadruple. (Contributed by Mario Carneiro, 5-Jan-2016.)
Assertion
Ref Expression
en4 (𝐴 ≈ 4o → ∃𝑥𝑦𝑧𝑤 𝐴 = ({𝑥, 𝑦} ∪ {𝑧, 𝑤}))
Distinct variable group:   𝑥,𝑤,𝑦,𝑧,𝐴

Proof of Theorem en4
StepHypRef Expression
1 3onn 8267 . 2 3o ∈ ω
2 df-4o 8105 . 2 4o = suc 3o
3 en3 8755 . 2 ((𝐴 ∖ {𝑥}) ≈ 3o → ∃𝑦𝑧𝑤(𝐴 ∖ {𝑥}) = {𝑦, 𝑧, 𝑤})
4 qdassr 4690 . . . . 5 ({𝑥, 𝑦} ∪ {𝑧, 𝑤}) = ({𝑥} ∪ {𝑦, 𝑧, 𝑤})
54enp1ilem 8752 . . . 4 (𝑥𝐴 → ((𝐴 ∖ {𝑥}) = {𝑦, 𝑧, 𝑤} → 𝐴 = ({𝑥, 𝑦} ∪ {𝑧, 𝑤})))
65eximdv 1918 . . 3 (𝑥𝐴 → (∃𝑤(𝐴 ∖ {𝑥}) = {𝑦, 𝑧, 𝑤} → ∃𝑤 𝐴 = ({𝑥, 𝑦} ∪ {𝑧, 𝑤})))
762eximdv 1920 . 2 (𝑥𝐴 → (∃𝑦𝑧𝑤(𝐴 ∖ {𝑥}) = {𝑦, 𝑧, 𝑤} → ∃𝑦𝑧𝑤 𝐴 = ({𝑥, 𝑦} ∪ {𝑧, 𝑤})))
81, 2, 3, 7enp1i 8753 1 (𝐴 ≈ 4o → ∃𝑥𝑦𝑧𝑤 𝐴 = ({𝑥, 𝑦} ∪ {𝑧, 𝑤}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wex 1780  wcel 2114  cdif 3933  cun 3934  {csn 4567  {cpr 4569  {ctp 4571   class class class wbr 5066  3oc3o 8097  4oc4o 8098  cen 8506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-om 7581  df-1o 8102  df-2o 8103  df-3o 8104  df-4o 8105  df-er 8289  df-en 8510  df-fin 8513
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator