Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  enp1i Structured version   Visualization version   GIF version

Theorem enp1i 8139
 Description: Proof induction for en2i 7937 and related theorems. (Contributed by Mario Carneiro, 5-Jan-2016.)
Hypotheses
Ref Expression
enp1i.1 𝑀 ∈ ω
enp1i.2 𝑁 = suc 𝑀
enp1i.3 ((𝐴 ∖ {𝑥}) ≈ 𝑀𝜑)
enp1i.4 (𝑥𝐴 → (𝜑𝜓))
Assertion
Ref Expression
enp1i (𝐴𝑁 → ∃𝑥𝜓)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑁
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝑀(𝑥)

Proof of Theorem enp1i
StepHypRef Expression
1 nsuceq0 5764 . . . . 5 suc 𝑀 ≠ ∅
2 breq1 4616 . . . . . . 7 (𝐴 = ∅ → (𝐴𝑁 ↔ ∅ ≈ 𝑁))
3 enp1i.2 . . . . . . . 8 𝑁 = suc 𝑀
4 ensym 7949 . . . . . . . . 9 (∅ ≈ 𝑁𝑁 ≈ ∅)
5 en0 7963 . . . . . . . . 9 (𝑁 ≈ ∅ ↔ 𝑁 = ∅)
64, 5sylib 208 . . . . . . . 8 (∅ ≈ 𝑁𝑁 = ∅)
73, 6syl5eqr 2669 . . . . . . 7 (∅ ≈ 𝑁 → suc 𝑀 = ∅)
82, 7syl6bi 243 . . . . . 6 (𝐴 = ∅ → (𝐴𝑁 → suc 𝑀 = ∅))
98necon3ad 2803 . . . . 5 (𝐴 = ∅ → (suc 𝑀 ≠ ∅ → ¬ 𝐴𝑁))
101, 9mpi 20 . . . 4 (𝐴 = ∅ → ¬ 𝐴𝑁)
1110con2i 134 . . 3 (𝐴𝑁 → ¬ 𝐴 = ∅)
12 neq0 3906 . . 3 𝐴 = ∅ ↔ ∃𝑥 𝑥𝐴)
1311, 12sylib 208 . 2 (𝐴𝑁 → ∃𝑥 𝑥𝐴)
143breq2i 4621 . . . . 5 (𝐴𝑁𝐴 ≈ suc 𝑀)
15 enp1i.1 . . . . . . . 8 𝑀 ∈ ω
16 dif1en 8137 . . . . . . . 8 ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀𝑥𝐴) → (𝐴 ∖ {𝑥}) ≈ 𝑀)
1715, 16mp3an1 1408 . . . . . . 7 ((𝐴 ≈ suc 𝑀𝑥𝐴) → (𝐴 ∖ {𝑥}) ≈ 𝑀)
18 enp1i.3 . . . . . . 7 ((𝐴 ∖ {𝑥}) ≈ 𝑀𝜑)
1917, 18syl 17 . . . . . 6 ((𝐴 ≈ suc 𝑀𝑥𝐴) → 𝜑)
2019ex 450 . . . . 5 (𝐴 ≈ suc 𝑀 → (𝑥𝐴𝜑))
2114, 20sylbi 207 . . . 4 (𝐴𝑁 → (𝑥𝐴𝜑))
22 enp1i.4 . . . 4 (𝑥𝐴 → (𝜑𝜓))
2321, 22sylcom 30 . . 3 (𝐴𝑁 → (𝑥𝐴𝜓))
2423eximdv 1843 . 2 (𝐴𝑁 → (∃𝑥 𝑥𝐴 → ∃𝑥𝜓))
2513, 24mpd 15 1 (𝐴𝑁 → ∃𝑥𝜓)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 384   = wceq 1480  ∃wex 1701   ∈ wcel 1987   ≠ wne 2790   ∖ cdif 3552  ∅c0 3891  {csn 4148   class class class wbr 4613  suc csuc 5684  ωcom 7012   ≈ cen 7896 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-om 7013  df-1o 7505  df-er 7687  df-en 7900  df-fin 7903 This theorem is referenced by:  en2  8140  en3  8141  en4  8142
 Copyright terms: Public domain W3C validator