MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  findcard Structured version   Visualization version   GIF version

Theorem findcard 8143
Description: Schema for induction on the cardinality of a finite set. The inductive hypothesis is that the result is true on the given set with any one element removed. The result is then proven to be true for all finite sets. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
findcard.1 (𝑥 = ∅ → (𝜑𝜓))
findcard.2 (𝑥 = (𝑦 ∖ {𝑧}) → (𝜑𝜒))
findcard.3 (𝑥 = 𝑦 → (𝜑𝜃))
findcard.4 (𝑥 = 𝐴 → (𝜑𝜏))
findcard.5 𝜓
findcard.6 (𝑦 ∈ Fin → (∀𝑧𝑦 𝜒𝜃))
Assertion
Ref Expression
findcard (𝐴 ∈ Fin → 𝜏)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝜓,𝑥   𝜒,𝑥   𝜃,𝑥   𝜏,𝑥   𝜑,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦,𝑧)   𝜒(𝑦,𝑧)   𝜃(𝑦,𝑧)   𝜏(𝑦,𝑧)

Proof of Theorem findcard
Dummy variables 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 findcard.4 . 2 (𝑥 = 𝐴 → (𝜑𝜏))
2 isfi 7923 . . 3 (𝑥 ∈ Fin ↔ ∃𝑤 ∈ ω 𝑥𝑤)
3 breq2 4617 . . . . . . . 8 (𝑤 = ∅ → (𝑥𝑤𝑥 ≈ ∅))
43imbi1d 331 . . . . . . 7 (𝑤 = ∅ → ((𝑥𝑤𝜑) ↔ (𝑥 ≈ ∅ → 𝜑)))
54albidv 1846 . . . . . 6 (𝑤 = ∅ → (∀𝑥(𝑥𝑤𝜑) ↔ ∀𝑥(𝑥 ≈ ∅ → 𝜑)))
6 breq2 4617 . . . . . . . 8 (𝑤 = 𝑣 → (𝑥𝑤𝑥𝑣))
76imbi1d 331 . . . . . . 7 (𝑤 = 𝑣 → ((𝑥𝑤𝜑) ↔ (𝑥𝑣𝜑)))
87albidv 1846 . . . . . 6 (𝑤 = 𝑣 → (∀𝑥(𝑥𝑤𝜑) ↔ ∀𝑥(𝑥𝑣𝜑)))
9 breq2 4617 . . . . . . . 8 (𝑤 = suc 𝑣 → (𝑥𝑤𝑥 ≈ suc 𝑣))
109imbi1d 331 . . . . . . 7 (𝑤 = suc 𝑣 → ((𝑥𝑤𝜑) ↔ (𝑥 ≈ suc 𝑣𝜑)))
1110albidv 1846 . . . . . 6 (𝑤 = suc 𝑣 → (∀𝑥(𝑥𝑤𝜑) ↔ ∀𝑥(𝑥 ≈ suc 𝑣𝜑)))
12 en0 7963 . . . . . . . 8 (𝑥 ≈ ∅ ↔ 𝑥 = ∅)
13 findcard.5 . . . . . . . . 9 𝜓
14 findcard.1 . . . . . . . . 9 (𝑥 = ∅ → (𝜑𝜓))
1513, 14mpbiri 248 . . . . . . . 8 (𝑥 = ∅ → 𝜑)
1612, 15sylbi 207 . . . . . . 7 (𝑥 ≈ ∅ → 𝜑)
1716ax-gen 1719 . . . . . 6 𝑥(𝑥 ≈ ∅ → 𝜑)
18 peano2 7033 . . . . . . . . . . . . 13 (𝑣 ∈ ω → suc 𝑣 ∈ ω)
19 breq2 4617 . . . . . . . . . . . . . 14 (𝑤 = suc 𝑣 → (𝑦𝑤𝑦 ≈ suc 𝑣))
2019rspcev 3295 . . . . . . . . . . . . 13 ((suc 𝑣 ∈ ω ∧ 𝑦 ≈ suc 𝑣) → ∃𝑤 ∈ ω 𝑦𝑤)
2118, 20sylan 488 . . . . . . . . . . . 12 ((𝑣 ∈ ω ∧ 𝑦 ≈ suc 𝑣) → ∃𝑤 ∈ ω 𝑦𝑤)
22 isfi 7923 . . . . . . . . . . . 12 (𝑦 ∈ Fin ↔ ∃𝑤 ∈ ω 𝑦𝑤)
2321, 22sylibr 224 . . . . . . . . . . 11 ((𝑣 ∈ ω ∧ 𝑦 ≈ suc 𝑣) → 𝑦 ∈ Fin)
24233adant2 1078 . . . . . . . . . 10 ((𝑣 ∈ ω ∧ ∀𝑥(𝑥𝑣𝜑) ∧ 𝑦 ≈ suc 𝑣) → 𝑦 ∈ Fin)
25 dif1en 8137 . . . . . . . . . . . . . . . 16 ((𝑣 ∈ ω ∧ 𝑦 ≈ suc 𝑣𝑧𝑦) → (𝑦 ∖ {𝑧}) ≈ 𝑣)
26253expa 1262 . . . . . . . . . . . . . . 15 (((𝑣 ∈ ω ∧ 𝑦 ≈ suc 𝑣) ∧ 𝑧𝑦) → (𝑦 ∖ {𝑧}) ≈ 𝑣)
27 vex 3189 . . . . . . . . . . . . . . . . 17 𝑦 ∈ V
28 difexg 4768 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ V → (𝑦 ∖ {𝑧}) ∈ V)
2927, 28ax-mp 5 . . . . . . . . . . . . . . . 16 (𝑦 ∖ {𝑧}) ∈ V
30 breq1 4616 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝑦 ∖ {𝑧}) → (𝑥𝑣 ↔ (𝑦 ∖ {𝑧}) ≈ 𝑣))
31 findcard.2 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝑦 ∖ {𝑧}) → (𝜑𝜒))
3230, 31imbi12d 334 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑦 ∖ {𝑧}) → ((𝑥𝑣𝜑) ↔ ((𝑦 ∖ {𝑧}) ≈ 𝑣𝜒)))
3329, 32spcv 3285 . . . . . . . . . . . . . . 15 (∀𝑥(𝑥𝑣𝜑) → ((𝑦 ∖ {𝑧}) ≈ 𝑣𝜒))
3426, 33syl5com 31 . . . . . . . . . . . . . 14 (((𝑣 ∈ ω ∧ 𝑦 ≈ suc 𝑣) ∧ 𝑧𝑦) → (∀𝑥(𝑥𝑣𝜑) → 𝜒))
3534ralrimdva 2963 . . . . . . . . . . . . 13 ((𝑣 ∈ ω ∧ 𝑦 ≈ suc 𝑣) → (∀𝑥(𝑥𝑣𝜑) → ∀𝑧𝑦 𝜒))
3635imp 445 . . . . . . . . . . . 12 (((𝑣 ∈ ω ∧ 𝑦 ≈ suc 𝑣) ∧ ∀𝑥(𝑥𝑣𝜑)) → ∀𝑧𝑦 𝜒)
3736an32s 845 . . . . . . . . . . 11 (((𝑣 ∈ ω ∧ ∀𝑥(𝑥𝑣𝜑)) ∧ 𝑦 ≈ suc 𝑣) → ∀𝑧𝑦 𝜒)
38373impa 1256 . . . . . . . . . 10 ((𝑣 ∈ ω ∧ ∀𝑥(𝑥𝑣𝜑) ∧ 𝑦 ≈ suc 𝑣) → ∀𝑧𝑦 𝜒)
39 findcard.6 . . . . . . . . . 10 (𝑦 ∈ Fin → (∀𝑧𝑦 𝜒𝜃))
4024, 38, 39sylc 65 . . . . . . . . 9 ((𝑣 ∈ ω ∧ ∀𝑥(𝑥𝑣𝜑) ∧ 𝑦 ≈ suc 𝑣) → 𝜃)
41403exp 1261 . . . . . . . 8 (𝑣 ∈ ω → (∀𝑥(𝑥𝑣𝜑) → (𝑦 ≈ suc 𝑣𝜃)))
4241alrimdv 1854 . . . . . . 7 (𝑣 ∈ ω → (∀𝑥(𝑥𝑣𝜑) → ∀𝑦(𝑦 ≈ suc 𝑣𝜃)))
43 breq1 4616 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 ≈ suc 𝑣𝑦 ≈ suc 𝑣))
44 findcard.3 . . . . . . . . 9 (𝑥 = 𝑦 → (𝜑𝜃))
4543, 44imbi12d 334 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑥 ≈ suc 𝑣𝜑) ↔ (𝑦 ≈ suc 𝑣𝜃)))
4645cbvalv 2272 . . . . . . 7 (∀𝑥(𝑥 ≈ suc 𝑣𝜑) ↔ ∀𝑦(𝑦 ≈ suc 𝑣𝜃))
4742, 46syl6ibr 242 . . . . . 6 (𝑣 ∈ ω → (∀𝑥(𝑥𝑣𝜑) → ∀𝑥(𝑥 ≈ suc 𝑣𝜑)))
485, 8, 11, 17, 47finds1 7042 . . . . 5 (𝑤 ∈ ω → ∀𝑥(𝑥𝑤𝜑))
494819.21bi 2057 . . . 4 (𝑤 ∈ ω → (𝑥𝑤𝜑))
5049rexlimiv 3020 . . 3 (∃𝑤 ∈ ω 𝑥𝑤𝜑)
512, 50sylbi 207 . 2 (𝑥 ∈ Fin → 𝜑)
521, 51vtoclga 3258 1 (𝐴 ∈ Fin → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036  wal 1478   = wceq 1480  wcel 1987  wral 2907  wrex 2908  Vcvv 3186  cdif 3552  c0 3891  {csn 4148   class class class wbr 4613  suc csuc 5684  ωcom 7012  cen 7896  Fincfn 7899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-om 7013  df-1o 7505  df-er 7687  df-en 7900  df-fin 7903
This theorem is referenced by:  xpfi  8175
  Copyright terms: Public domain W3C validator