MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fidomdm Structured version   Visualization version   GIF version

Theorem fidomdm 8801
Description: Any finite set dominates its domain. (Contributed by Mario Carneiro, 22-Sep-2013.) (Revised by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
fidomdm (𝐹 ∈ Fin → dom 𝐹𝐹)

Proof of Theorem fidomdm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dmresv 6057 . 2 dom (𝐹 ↾ V) = dom 𝐹
2 finresfin 8744 . . . 4 (𝐹 ∈ Fin → (𝐹 ↾ V) ∈ Fin)
3 fvex 6683 . . . . . . 7 (1st𝑥) ∈ V
4 eqid 2821 . . . . . . 7 (𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥)) = (𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥))
53, 4fnmpti 6491 . . . . . 6 (𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥)) Fn (𝐹 ↾ V)
6 dffn4 6596 . . . . . 6 ((𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥)) Fn (𝐹 ↾ V) ↔ (𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥)):(𝐹 ↾ V)–onto→ran (𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥)))
75, 6mpbi 232 . . . . 5 (𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥)):(𝐹 ↾ V)–onto→ran (𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥))
8 relres 5882 . . . . . 6 Rel (𝐹 ↾ V)
9 reldm 7743 . . . . . 6 (Rel (𝐹 ↾ V) → dom (𝐹 ↾ V) = ran (𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥)))
10 foeq3 6588 . . . . . 6 (dom (𝐹 ↾ V) = ran (𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥)) → ((𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥)):(𝐹 ↾ V)–onto→dom (𝐹 ↾ V) ↔ (𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥)):(𝐹 ↾ V)–onto→ran (𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥))))
118, 9, 10mp2b 10 . . . . 5 ((𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥)):(𝐹 ↾ V)–onto→dom (𝐹 ↾ V) ↔ (𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥)):(𝐹 ↾ V)–onto→ran (𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥)))
127, 11mpbir 233 . . . 4 (𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥)):(𝐹 ↾ V)–onto→dom (𝐹 ↾ V)
13 fodomfi 8797 . . . 4 (((𝐹 ↾ V) ∈ Fin ∧ (𝑥 ∈ (𝐹 ↾ V) ↦ (1st𝑥)):(𝐹 ↾ V)–onto→dom (𝐹 ↾ V)) → dom (𝐹 ↾ V) ≼ (𝐹 ↾ V))
142, 12, 13sylancl 588 . . 3 (𝐹 ∈ Fin → dom (𝐹 ↾ V) ≼ (𝐹 ↾ V))
15 resss 5878 . . . 4 (𝐹 ↾ V) ⊆ 𝐹
16 ssdomg 8555 . . . 4 (𝐹 ∈ Fin → ((𝐹 ↾ V) ⊆ 𝐹 → (𝐹 ↾ V) ≼ 𝐹))
1715, 16mpi 20 . . 3 (𝐹 ∈ Fin → (𝐹 ↾ V) ≼ 𝐹)
18 domtr 8562 . . 3 ((dom (𝐹 ↾ V) ≼ (𝐹 ↾ V) ∧ (𝐹 ↾ V) ≼ 𝐹) → dom (𝐹 ↾ V) ≼ 𝐹)
1914, 17, 18syl2anc 586 . 2 (𝐹 ∈ Fin → dom (𝐹 ↾ V) ≼ 𝐹)
201, 19eqbrtrrid 5102 1 (𝐹 ∈ Fin → dom 𝐹𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208   = wceq 1537  wcel 2114  Vcvv 3494  wss 3936   class class class wbr 5066  cmpt 5146  dom cdm 5555  ran crn 5556  cres 5557  Rel wrel 5560   Fn wfn 6350  ontowfo 6353  cfv 6355  1st c1st 7687  cdom 8507  Fincfn 8509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-om 7581  df-1st 7689  df-2nd 7690  df-1o 8102  df-er 8289  df-en 8510  df-dom 8511  df-fin 8513
This theorem is referenced by:  dmfi  8802  hashfun  13799
  Copyright terms: Public domain W3C validator