MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fthfunc Structured version   Visualization version   GIF version

Theorem fthfunc 16333
Description: A faithful functor is a functor. (Contributed by Mario Carneiro, 26-Jan-2017.)
Assertion
Ref Expression
fthfunc (𝐶 Faith 𝐷) ⊆ (𝐶 Func 𝐷)

Proof of Theorem fthfunc
Dummy variables 𝑐 𝑑 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6531 . . . 4 (𝑐 = 𝐶 → (𝑐 Faith 𝑑) = (𝐶 Faith 𝑑))
2 oveq1 6531 . . . 4 (𝑐 = 𝐶 → (𝑐 Func 𝑑) = (𝐶 Func 𝑑))
31, 2sseq12d 3593 . . 3 (𝑐 = 𝐶 → ((𝑐 Faith 𝑑) ⊆ (𝑐 Func 𝑑) ↔ (𝐶 Faith 𝑑) ⊆ (𝐶 Func 𝑑)))
4 oveq2 6532 . . . 4 (𝑑 = 𝐷 → (𝐶 Faith 𝑑) = (𝐶 Faith 𝐷))
5 oveq2 6532 . . . 4 (𝑑 = 𝐷 → (𝐶 Func 𝑑) = (𝐶 Func 𝐷))
64, 5sseq12d 3593 . . 3 (𝑑 = 𝐷 → ((𝐶 Faith 𝑑) ⊆ (𝐶 Func 𝑑) ↔ (𝐶 Faith 𝐷) ⊆ (𝐶 Func 𝐷)))
7 ovex 6552 . . . . . 6 (𝑐 Func 𝑑) ∈ V
8 simpl 471 . . . . . . . 8 ((𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)Fun (𝑥𝑔𝑦)) → 𝑓(𝑐 Func 𝑑)𝑔)
98ssopab2i 4915 . . . . . . 7 {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)Fun (𝑥𝑔𝑦))} ⊆ {⟨𝑓, 𝑔⟩ ∣ 𝑓(𝑐 Func 𝑑)𝑔}
10 opabss 4637 . . . . . . 7 {⟨𝑓, 𝑔⟩ ∣ 𝑓(𝑐 Func 𝑑)𝑔} ⊆ (𝑐 Func 𝑑)
119, 10sstri 3573 . . . . . 6 {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)Fun (𝑥𝑔𝑦))} ⊆ (𝑐 Func 𝑑)
127, 11ssexi 4723 . . . . 5 {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)Fun (𝑥𝑔𝑦))} ∈ V
13 df-fth 16331 . . . . . 6 Faith = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)Fun (𝑥𝑔𝑦))})
1413ovmpt4g 6656 . . . . 5 ((𝑐 ∈ Cat ∧ 𝑑 ∈ Cat ∧ {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)Fun (𝑥𝑔𝑦))} ∈ V) → (𝑐 Faith 𝑑) = {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)Fun (𝑥𝑔𝑦))})
1512, 14mp3an3 1404 . . . 4 ((𝑐 ∈ Cat ∧ 𝑑 ∈ Cat) → (𝑐 Faith 𝑑) = {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)Fun (𝑥𝑔𝑦))})
1615, 11syl6eqss 3614 . . 3 ((𝑐 ∈ Cat ∧ 𝑑 ∈ Cat) → (𝑐 Faith 𝑑) ⊆ (𝑐 Func 𝑑))
173, 6, 16vtocl2ga 3243 . 2 ((𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 Faith 𝐷) ⊆ (𝐶 Func 𝐷))
1813mpt2ndm0 6747 . . 3 (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 Faith 𝐷) = ∅)
19 0ss 3920 . . 3 ∅ ⊆ (𝐶 Func 𝐷)
2018, 19syl6eqss 3614 . 2 (¬ (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat) → (𝐶 Faith 𝐷) ⊆ (𝐶 Func 𝐷))
2117, 20pm2.61i 174 1 (𝐶 Faith 𝐷) ⊆ (𝐶 Func 𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 382   = wceq 1474  wcel 1976  wral 2892  Vcvv 3169  wss 3536  c0 3870   class class class wbr 4574  {copab 4633  ccnv 5024  Fun wfun 5781  cfv 5787  (class class class)co 6524  Basecbs 15638  Catccat 16091   Func cfunc 16280   Faith cfth 16329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586  ax-sep 4700  ax-nul 4709  ax-pow 4761  ax-pr 4825
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2458  df-mo 2459  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-ral 2897  df-rex 2898  df-rab 2901  df-v 3171  df-sbc 3399  df-dif 3539  df-un 3541  df-in 3543  df-ss 3550  df-nul 3871  df-if 4033  df-sn 4122  df-pr 4124  df-op 4128  df-uni 4364  df-br 4575  df-opab 4635  df-id 4940  df-xp 5031  df-rel 5032  df-cnv 5033  df-co 5034  df-dm 5035  df-iota 5751  df-fun 5789  df-fv 5795  df-ov 6527  df-oprab 6528  df-mpt2 6529  df-fth 16331
This theorem is referenced by:  relfth  16335  isfth  16340  fthoppc  16349  fthsect  16351  fthinv  16352  fthmon  16353  fthepi  16354  ffthiso  16355  cofth  16361  inclfusubc  41656
  Copyright terms: Public domain W3C validator