MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fthoppc Structured version   Visualization version   GIF version

Theorem fthoppc 16352
Description: The opposite functor of a faithful functor is also faithful. Proposition 3.43(c) in [Adamek] p. 39. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
fulloppc.o 𝑂 = (oppCat‘𝐶)
fulloppc.p 𝑃 = (oppCat‘𝐷)
fthoppc.f (𝜑𝐹(𝐶 Faith 𝐷)𝐺)
Assertion
Ref Expression
fthoppc (𝜑𝐹(𝑂 Faith 𝑃)tpos 𝐺)

Proof of Theorem fthoppc
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fulloppc.o . . 3 𝑂 = (oppCat‘𝐶)
2 fulloppc.p . . 3 𝑃 = (oppCat‘𝐷)
3 fthoppc.f . . . 4 (𝜑𝐹(𝐶 Faith 𝐷)𝐺)
4 fthfunc 16336 . . . . 5 (𝐶 Faith 𝐷) ⊆ (𝐶 Func 𝐷)
54ssbri 4621 . . . 4 (𝐹(𝐶 Faith 𝐷)𝐺𝐹(𝐶 Func 𝐷)𝐺)
63, 5syl 17 . . 3 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
71, 2, 6funcoppc 16304 . 2 (𝜑𝐹(𝑂 Func 𝑃)tpos 𝐺)
8 eqid 2609 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
9 eqid 2609 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
10 eqid 2609 . . . . . 6 (Hom ‘𝐷) = (Hom ‘𝐷)
113adantr 479 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐹(𝐶 Faith 𝐷)𝐺)
12 simprr 791 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
13 simprl 789 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶))
148, 9, 10, 11, 12, 13fthf1 16346 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑦𝐺𝑥):(𝑦(Hom ‘𝐶)𝑥)–1-1→((𝐹𝑦)(Hom ‘𝐷)(𝐹𝑥)))
15 df-f1 5795 . . . . . 6 ((𝑦𝐺𝑥):(𝑦(Hom ‘𝐶)𝑥)–1-1→((𝐹𝑦)(Hom ‘𝐷)(𝐹𝑥)) ↔ ((𝑦𝐺𝑥):(𝑦(Hom ‘𝐶)𝑥)⟶((𝐹𝑦)(Hom ‘𝐷)(𝐹𝑥)) ∧ Fun (𝑦𝐺𝑥)))
1615simprbi 478 . . . . 5 ((𝑦𝐺𝑥):(𝑦(Hom ‘𝐶)𝑥)–1-1→((𝐹𝑦)(Hom ‘𝐷)(𝐹𝑥)) → Fun (𝑦𝐺𝑥))
1714, 16syl 17 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → Fun (𝑦𝐺𝑥))
18 ovtpos 7231 . . . . . 6 (𝑥tpos 𝐺𝑦) = (𝑦𝐺𝑥)
1918cnveqi 5207 . . . . 5 (𝑥tpos 𝐺𝑦) = (𝑦𝐺𝑥)
2019funeqi 5810 . . . 4 (Fun (𝑥tpos 𝐺𝑦) ↔ Fun (𝑦𝐺𝑥))
2117, 20sylibr 222 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → Fun (𝑥tpos 𝐺𝑦))
2221ralrimivva 2953 . 2 (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)Fun (𝑥tpos 𝐺𝑦))
231, 8oppcbas 16147 . . 3 (Base‘𝐶) = (Base‘𝑂)
2423isfth 16343 . 2 (𝐹(𝑂 Faith 𝑃)tpos 𝐺 ↔ (𝐹(𝑂 Func 𝑃)tpos 𝐺 ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)Fun (𝑥tpos 𝐺𝑦)))
257, 22, 24sylanbrc 694 1 (𝜑𝐹(𝑂 Faith 𝑃)tpos 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1976  wral 2895   class class class wbr 4577  ccnv 5027  Fun wfun 5784  wf 5786  1-1wf1 5787  cfv 5790  (class class class)co 6527  tpos ctpos 7215  Basecbs 15641  Hom chom 15725  oppCatcoppc 16140   Func cfunc 16283   Faith cfth 16332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-1st 7036  df-2nd 7037  df-tpos 7216  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-er 7606  df-map 7723  df-ixp 7772  df-en 7819  df-dom 7820  df-sdom 7821  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-nn 10868  df-2 10926  df-3 10927  df-4 10928  df-5 10929  df-6 10930  df-7 10931  df-8 10932  df-9 10933  df-n0 11140  df-z 11211  df-dec 11326  df-ndx 15644  df-slot 15645  df-base 15646  df-sets 15647  df-hom 15739  df-cco 15740  df-cat 16098  df-cid 16099  df-oppc 16141  df-func 16287  df-fth 16334
This theorem is referenced by:  ffthoppc  16353  fthepi  16357
  Copyright terms: Public domain W3C validator