![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvreseq1 | Structured version Visualization version GIF version |
Description: Equality of a function restricted to the domain of another function. (Contributed by AV, 6-Jan-2019.) |
Ref | Expression |
---|---|
fvreseq1 | ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ 𝐵 ⊆ 𝐴) → ((𝐹 ↾ 𝐵) = 𝐺 ↔ ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = (𝐺‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnresdm 6161 | . . . . 5 ⊢ (𝐺 Fn 𝐵 → (𝐺 ↾ 𝐵) = 𝐺) | |
2 | 1 | ad2antlr 765 | . . . 4 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ 𝐵 ⊆ 𝐴) → (𝐺 ↾ 𝐵) = 𝐺) |
3 | 2 | eqcomd 2766 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ 𝐵 ⊆ 𝐴) → 𝐺 = (𝐺 ↾ 𝐵)) |
4 | 3 | eqeq2d 2770 | . 2 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ 𝐵 ⊆ 𝐴) → ((𝐹 ↾ 𝐵) = 𝐺 ↔ (𝐹 ↾ 𝐵) = (𝐺 ↾ 𝐵))) |
5 | ssid 3765 | . . 3 ⊢ 𝐵 ⊆ 𝐵 | |
6 | fvreseq0 6481 | . . 3 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ⊆ 𝐵)) → ((𝐹 ↾ 𝐵) = (𝐺 ↾ 𝐵) ↔ ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = (𝐺‘𝑥))) | |
7 | 5, 6 | mpanr2 722 | . 2 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ 𝐵 ⊆ 𝐴) → ((𝐹 ↾ 𝐵) = (𝐺 ↾ 𝐵) ↔ ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = (𝐺‘𝑥))) |
8 | 4, 7 | bitrd 268 | 1 ⊢ (((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵) ∧ 𝐵 ⊆ 𝐴) → ((𝐹 ↾ 𝐵) = 𝐺 ↔ ∀𝑥 ∈ 𝐵 (𝐹‘𝑥) = (𝐺‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∀wral 3050 ⊆ wss 3715 ↾ cres 5268 Fn wfn 6044 ‘cfv 6049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-fv 6057 |
This theorem is referenced by: symgextres 18065 sseqfres 30785 |
Copyright terms: Public domain | W3C validator |