Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fwddifval Structured version   Visualization version   GIF version

Theorem fwddifval 32394
Description: Calculate the value of the forward difference operator at a point. (Contributed by Scott Fenton, 18-May-2020.)
Hypotheses
Ref Expression
fwddifval.1 (𝜑𝐴 ⊆ ℂ)
fwddifval.2 (𝜑𝐹:𝐴⟶ℂ)
fwddifval.3 (𝜑𝑋𝐴)
fwddifval.4 (𝜑 → (𝑋 + 1) ∈ 𝐴)
Assertion
Ref Expression
fwddifval (𝜑 → (( △ ‘𝐹)‘𝑋) = ((𝐹‘(𝑋 + 1)) − (𝐹𝑋)))

Proof of Theorem fwddifval
Dummy variables 𝑥 𝑦 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fwddif 32391 . . . . 5 △ = (𝑓 ∈ (ℂ ↑pm ℂ) ↦ (𝑥 ∈ {𝑦 ∈ dom 𝑓 ∣ (𝑦 + 1) ∈ dom 𝑓} ↦ ((𝑓‘(𝑥 + 1)) − (𝑓𝑥))))
21a1i 11 . . . 4 (𝜑 → △ = (𝑓 ∈ (ℂ ↑pm ℂ) ↦ (𝑥 ∈ {𝑦 ∈ dom 𝑓 ∣ (𝑦 + 1) ∈ dom 𝑓} ↦ ((𝑓‘(𝑥 + 1)) − (𝑓𝑥)))))
3 dmeq 5356 . . . . . . 7 (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹)
43eleq2d 2716 . . . . . . 7 (𝑓 = 𝐹 → ((𝑦 + 1) ∈ dom 𝑓 ↔ (𝑦 + 1) ∈ dom 𝐹))
53, 4rabeqbidv 3226 . . . . . 6 (𝑓 = 𝐹 → {𝑦 ∈ dom 𝑓 ∣ (𝑦 + 1) ∈ dom 𝑓} = {𝑦 ∈ dom 𝐹 ∣ (𝑦 + 1) ∈ dom 𝐹})
6 fveq1 6228 . . . . . . 7 (𝑓 = 𝐹 → (𝑓‘(𝑥 + 1)) = (𝐹‘(𝑥 + 1)))
7 fveq1 6228 . . . . . . 7 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
86, 7oveq12d 6708 . . . . . 6 (𝑓 = 𝐹 → ((𝑓‘(𝑥 + 1)) − (𝑓𝑥)) = ((𝐹‘(𝑥 + 1)) − (𝐹𝑥)))
95, 8mpteq12dv 4766 . . . . 5 (𝑓 = 𝐹 → (𝑥 ∈ {𝑦 ∈ dom 𝑓 ∣ (𝑦 + 1) ∈ dom 𝑓} ↦ ((𝑓‘(𝑥 + 1)) − (𝑓𝑥))) = (𝑥 ∈ {𝑦 ∈ dom 𝐹 ∣ (𝑦 + 1) ∈ dom 𝐹} ↦ ((𝐹‘(𝑥 + 1)) − (𝐹𝑥))))
109adantl 481 . . . 4 ((𝜑𝑓 = 𝐹) → (𝑥 ∈ {𝑦 ∈ dom 𝑓 ∣ (𝑦 + 1) ∈ dom 𝑓} ↦ ((𝑓‘(𝑥 + 1)) − (𝑓𝑥))) = (𝑥 ∈ {𝑦 ∈ dom 𝐹 ∣ (𝑦 + 1) ∈ dom 𝐹} ↦ ((𝐹‘(𝑥 + 1)) − (𝐹𝑥))))
11 fwddifval.2 . . . . 5 (𝜑𝐹:𝐴⟶ℂ)
12 fwddifval.1 . . . . 5 (𝜑𝐴 ⊆ ℂ)
13 cnex 10055 . . . . . 6 ℂ ∈ V
14 elpm2r 7917 . . . . . 6 (((ℂ ∈ V ∧ ℂ ∈ V) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ)) → 𝐹 ∈ (ℂ ↑pm ℂ))
1513, 13, 14mpanl12 718 . . . . 5 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℂ) → 𝐹 ∈ (ℂ ↑pm ℂ))
1611, 12, 15syl2anc 694 . . . 4 (𝜑𝐹 ∈ (ℂ ↑pm ℂ))
17 fdm 6089 . . . . . . 7 (𝐹:𝐴⟶ℂ → dom 𝐹 = 𝐴)
1811, 17syl 17 . . . . . 6 (𝜑 → dom 𝐹 = 𝐴)
1913a1i 11 . . . . . . 7 (𝜑 → ℂ ∈ V)
2019, 12ssexd 4838 . . . . . 6 (𝜑𝐴 ∈ V)
2118, 20eqeltrd 2730 . . . . 5 (𝜑 → dom 𝐹 ∈ V)
22 rabexg 4844 . . . . 5 (dom 𝐹 ∈ V → {𝑦 ∈ dom 𝐹 ∣ (𝑦 + 1) ∈ dom 𝐹} ∈ V)
23 mptexg 6525 . . . . 5 ({𝑦 ∈ dom 𝐹 ∣ (𝑦 + 1) ∈ dom 𝐹} ∈ V → (𝑥 ∈ {𝑦 ∈ dom 𝐹 ∣ (𝑦 + 1) ∈ dom 𝐹} ↦ ((𝐹‘(𝑥 + 1)) − (𝐹𝑥))) ∈ V)
2421, 22, 233syl 18 . . . 4 (𝜑 → (𝑥 ∈ {𝑦 ∈ dom 𝐹 ∣ (𝑦 + 1) ∈ dom 𝐹} ↦ ((𝐹‘(𝑥 + 1)) − (𝐹𝑥))) ∈ V)
252, 10, 16, 24fvmptd 6327 . . 3 (𝜑 → ( △ ‘𝐹) = (𝑥 ∈ {𝑦 ∈ dom 𝐹 ∣ (𝑦 + 1) ∈ dom 𝐹} ↦ ((𝐹‘(𝑥 + 1)) − (𝐹𝑥))))
2618eleq2d 2716 . . . . 5 (𝜑 → ((𝑦 + 1) ∈ dom 𝐹 ↔ (𝑦 + 1) ∈ 𝐴))
2718, 26rabeqbidv 3226 . . . 4 (𝜑 → {𝑦 ∈ dom 𝐹 ∣ (𝑦 + 1) ∈ dom 𝐹} = {𝑦𝐴 ∣ (𝑦 + 1) ∈ 𝐴})
2827mpteq1d 4771 . . 3 (𝜑 → (𝑥 ∈ {𝑦 ∈ dom 𝐹 ∣ (𝑦 + 1) ∈ dom 𝐹} ↦ ((𝐹‘(𝑥 + 1)) − (𝐹𝑥))) = (𝑥 ∈ {𝑦𝐴 ∣ (𝑦 + 1) ∈ 𝐴} ↦ ((𝐹‘(𝑥 + 1)) − (𝐹𝑥))))
2925, 28eqtrd 2685 . 2 (𝜑 → ( △ ‘𝐹) = (𝑥 ∈ {𝑦𝐴 ∣ (𝑦 + 1) ∈ 𝐴} ↦ ((𝐹‘(𝑥 + 1)) − (𝐹𝑥))))
30 oveq1 6697 . . . . 5 (𝑥 = 𝑋 → (𝑥 + 1) = (𝑋 + 1))
3130fveq2d 6233 . . . 4 (𝑥 = 𝑋 → (𝐹‘(𝑥 + 1)) = (𝐹‘(𝑋 + 1)))
32 fveq2 6229 . . . 4 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
3331, 32oveq12d 6708 . . 3 (𝑥 = 𝑋 → ((𝐹‘(𝑥 + 1)) − (𝐹𝑥)) = ((𝐹‘(𝑋 + 1)) − (𝐹𝑋)))
3433adantl 481 . 2 ((𝜑𝑥 = 𝑋) → ((𝐹‘(𝑥 + 1)) − (𝐹𝑥)) = ((𝐹‘(𝑋 + 1)) − (𝐹𝑋)))
35 fwddifval.3 . . 3 (𝜑𝑋𝐴)
36 fwddifval.4 . . 3 (𝜑 → (𝑋 + 1) ∈ 𝐴)
37 oveq1 6697 . . . . 5 (𝑦 = 𝑋 → (𝑦 + 1) = (𝑋 + 1))
3837eleq1d 2715 . . . 4 (𝑦 = 𝑋 → ((𝑦 + 1) ∈ 𝐴 ↔ (𝑋 + 1) ∈ 𝐴))
3938elrab 3396 . . 3 (𝑋 ∈ {𝑦𝐴 ∣ (𝑦 + 1) ∈ 𝐴} ↔ (𝑋𝐴 ∧ (𝑋 + 1) ∈ 𝐴))
4035, 36, 39sylanbrc 699 . 2 (𝜑𝑋 ∈ {𝑦𝐴 ∣ (𝑦 + 1) ∈ 𝐴})
41 ovexd 6720 . 2 (𝜑 → ((𝐹‘(𝑋 + 1)) − (𝐹𝑋)) ∈ V)
4229, 34, 40, 41fvmptd 6327 1 (𝜑 → (( △ ‘𝐹)‘𝑋) = ((𝐹‘(𝑋 + 1)) − (𝐹𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030  {crab 2945  Vcvv 3231  wss 3607  cmpt 4762  dom cdm 5143  wf 5922  cfv 5926  (class class class)co 6690  pm cpm 7900  cc 9972  1c1 9975   + caddc 9977  cmin 10304  cfwddif 32390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-pm 7902  df-fwddif 32391
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator