MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpm2r Structured version   Visualization version   GIF version

Theorem elpm2r 7820
Description: Sufficient condition for being a partial function. (Contributed by NM, 31-Dec-2013.)
Assertion
Ref Expression
elpm2r (((𝐴𝑉𝐵𝑊) ∧ (𝐹:𝐶𝐴𝐶𝐵)) → 𝐹 ∈ (𝐴pm 𝐵))

Proof of Theorem elpm2r
StepHypRef Expression
1 fdm 6010 . . . . . . 7 (𝐹:𝐶𝐴 → dom 𝐹 = 𝐶)
21feq2d 5990 . . . . . 6 (𝐹:𝐶𝐴 → (𝐹:dom 𝐹𝐴𝐹:𝐶𝐴))
31sseq1d 3616 . . . . . 6 (𝐹:𝐶𝐴 → (dom 𝐹𝐵𝐶𝐵))
42, 3anbi12d 746 . . . . 5 (𝐹:𝐶𝐴 → ((𝐹:dom 𝐹𝐴 ∧ dom 𝐹𝐵) ↔ (𝐹:𝐶𝐴𝐶𝐵)))
54adantr 481 . . . 4 ((𝐹:𝐶𝐴𝐶𝐵) → ((𝐹:dom 𝐹𝐴 ∧ dom 𝐹𝐵) ↔ (𝐹:𝐶𝐴𝐶𝐵)))
65ibir 257 . . 3 ((𝐹:𝐶𝐴𝐶𝐵) → (𝐹:dom 𝐹𝐴 ∧ dom 𝐹𝐵))
7 elpm2g 7819 . . 3 ((𝐴𝑉𝐵𝑊) → (𝐹 ∈ (𝐴pm 𝐵) ↔ (𝐹:dom 𝐹𝐴 ∧ dom 𝐹𝐵)))
86, 7syl5ibr 236 . 2 ((𝐴𝑉𝐵𝑊) → ((𝐹:𝐶𝐴𝐶𝐵) → 𝐹 ∈ (𝐴pm 𝐵)))
98imp 445 1 (((𝐴𝑉𝐵𝑊) ∧ (𝐹:𝐶𝐴𝐶𝐵)) → 𝐹 ∈ (𝐴pm 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wcel 1992  wss 3560  dom cdm 5079  wf 5846  (class class class)co 6605  pm cpm 7804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3193  df-sbc 3423  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-fv 5858  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-pm 7806
This theorem is referenced by:  fpmg  7828  pmresg  7830  rlim  14155  ello12  14176  elo12  14187  sscpwex  16391  catcfuccl  16675  catcxpccl  16763  lmbrf  20969  cnextfval  21771  lmmbrf  22963  iscauf  22981  caucfil  22984  cmetcaulem  22989  lmclimf  23005  ismbf  23298  ismbfcn  23299  mbfconst  23303  cncombf  23326  cnmbf  23327  limcfval  23537  dvfval  23562  dvnff  23587  dvn2bss  23594  dvnfre  23616  taylfvallem1  24010  taylfval  24012  tayl0  24015  taylplem1  24016  taylply2  24021  taylply  24022  dvtaylp  24023  dvntaylp  24024  dvntaylp0  24025  taylthlem1  24026  taylthlem2  24027  ulmval  24033  ulmpm  24036  iscgrgd  25303  esumcvg  29921  mrsubfval  31105  elmrsubrn  31117  msubfval  31121  fwddifval  31903  fwddifnval  31904  dvnmptdivc  39446  dvnxpaek  39450  etransclem46  39791  issmflem  40230  fdivpm  41603  refdivpm  41604  elbigo2  41612
  Copyright terms: Public domain W3C validator