Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hsphoif Structured version   Visualization version   GIF version

Theorem hsphoif 39266
Description: 𝐻 is a function (that returns the representation of the right side of a half-open interval intersected with a half-space). Step (b) in Lemma 115B of [Fremlin1] p. 29. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
hsphoif.h 𝐻 = (𝑥 ∈ ℝ ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝑥, (𝑎𝑗), 𝑥)))))
hsphoif.a (𝜑𝐴 ∈ ℝ)
hsphoif.x (𝜑𝑋𝑉)
hsphoif.b (𝜑𝐵:𝑋⟶ℝ)
Assertion
Ref Expression
hsphoif (𝜑 → ((𝐻𝐴)‘𝐵):𝑋⟶ℝ)
Distinct variable groups:   𝐴,𝑎,𝑗,𝑥   𝐵,𝑎,𝑗   𝑋,𝑎,𝑗,𝑥   𝑌,𝑎,𝑥   𝜑,𝑎,𝑗,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐻(𝑥,𝑗,𝑎)   𝑉(𝑥,𝑗,𝑎)   𝑌(𝑗)

Proof of Theorem hsphoif
StepHypRef Expression
1 hsphoif.b . . . . 5 (𝜑𝐵:𝑋⟶ℝ)
21ffvelrnda 6248 . . . 4 ((𝜑𝑗𝑋) → (𝐵𝑗) ∈ ℝ)
3 hsphoif.a . . . . . 6 (𝜑𝐴 ∈ ℝ)
43adantr 479 . . . . 5 ((𝜑𝑗𝑋) → 𝐴 ∈ ℝ)
52, 4ifcld 4076 . . . 4 ((𝜑𝑗𝑋) → if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴) ∈ ℝ)
62, 5ifcld 4076 . . 3 ((𝜑𝑗𝑋) → if(𝑗𝑌, (𝐵𝑗), if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴)) ∈ ℝ)
7 eqid 2605 . . 3 (𝑗𝑋 ↦ if(𝑗𝑌, (𝐵𝑗), if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴))) = (𝑗𝑋 ↦ if(𝑗𝑌, (𝐵𝑗), if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴)))
86, 7fmptd 6273 . 2 (𝜑 → (𝑗𝑋 ↦ if(𝑗𝑌, (𝐵𝑗), if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴))):𝑋⟶ℝ)
9 hsphoif.h . . . . . 6 𝐻 = (𝑥 ∈ ℝ ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝑥, (𝑎𝑗), 𝑥)))))
109a1i 11 . . . . 5 (𝜑𝐻 = (𝑥 ∈ ℝ ↦ (𝑎 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝑥, (𝑎𝑗), 𝑥))))))
11 breq2 4577 . . . . . . . . . 10 (𝑥 = 𝐴 → ((𝑎𝑗) ≤ 𝑥 ↔ (𝑎𝑗) ≤ 𝐴))
12 id 22 . . . . . . . . . 10 (𝑥 = 𝐴𝑥 = 𝐴)
1311, 12ifbieq2d 4056 . . . . . . . . 9 (𝑥 = 𝐴 → if((𝑎𝑗) ≤ 𝑥, (𝑎𝑗), 𝑥) = if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴))
1413ifeq2d 4050 . . . . . . . 8 (𝑥 = 𝐴 → if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝑥, (𝑎𝑗), 𝑥)) = if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴)))
1514mpteq2dv 4663 . . . . . . 7 (𝑥 = 𝐴 → (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝑥, (𝑎𝑗), 𝑥))) = (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴))))
1615mpteq2dv 4663 . . . . . 6 (𝑥 = 𝐴 → (𝑎 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝑥, (𝑎𝑗), 𝑥)))) = (𝑎 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴)))))
1716adantl 480 . . . . 5 ((𝜑𝑥 = 𝐴) → (𝑎 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝑥, (𝑎𝑗), 𝑥)))) = (𝑎 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴)))))
18 ovex 6551 . . . . . . 7 (ℝ ↑𝑚 𝑋) ∈ V
1918mptex 6364 . . . . . 6 (𝑎 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴)))) ∈ V
2019a1i 11 . . . . 5 (𝜑 → (𝑎 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴)))) ∈ V)
2110, 17, 3, 20fvmptd 6178 . . . 4 (𝜑 → (𝐻𝐴) = (𝑎 ∈ (ℝ ↑𝑚 𝑋) ↦ (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴)))))
22 fveq1 6083 . . . . . . 7 (𝑎 = 𝐵 → (𝑎𝑗) = (𝐵𝑗))
2322breq1d 4583 . . . . . . . 8 (𝑎 = 𝐵 → ((𝑎𝑗) ≤ 𝐴 ↔ (𝐵𝑗) ≤ 𝐴))
2423, 22ifbieq1d 4054 . . . . . . 7 (𝑎 = 𝐵 → if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴) = if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴))
2522, 24ifeq12d 4051 . . . . . 6 (𝑎 = 𝐵 → if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴)) = if(𝑗𝑌, (𝐵𝑗), if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴)))
2625mpteq2dv 4663 . . . . 5 (𝑎 = 𝐵 → (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴))) = (𝑗𝑋 ↦ if(𝑗𝑌, (𝐵𝑗), if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴))))
2726adantl 480 . . . 4 ((𝜑𝑎 = 𝐵) → (𝑗𝑋 ↦ if(𝑗𝑌, (𝑎𝑗), if((𝑎𝑗) ≤ 𝐴, (𝑎𝑗), 𝐴))) = (𝑗𝑋 ↦ if(𝑗𝑌, (𝐵𝑗), if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴))))
28 reex 9879 . . . . . . . 8 ℝ ∈ V
2928a1i 11 . . . . . . 7 (𝜑 → ℝ ∈ V)
30 hsphoif.x . . . . . . 7 (𝜑𝑋𝑉)
3129, 30jca 552 . . . . . 6 (𝜑 → (ℝ ∈ V ∧ 𝑋𝑉))
32 elmapg 7730 . . . . . 6 ((ℝ ∈ V ∧ 𝑋𝑉) → (𝐵 ∈ (ℝ ↑𝑚 𝑋) ↔ 𝐵:𝑋⟶ℝ))
3331, 32syl 17 . . . . 5 (𝜑 → (𝐵 ∈ (ℝ ↑𝑚 𝑋) ↔ 𝐵:𝑋⟶ℝ))
341, 33mpbird 245 . . . 4 (𝜑𝐵 ∈ (ℝ ↑𝑚 𝑋))
35 mptexg 6363 . . . . 5 (𝑋𝑉 → (𝑗𝑋 ↦ if(𝑗𝑌, (𝐵𝑗), if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴))) ∈ V)
3630, 35syl 17 . . . 4 (𝜑 → (𝑗𝑋 ↦ if(𝑗𝑌, (𝐵𝑗), if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴))) ∈ V)
3721, 27, 34, 36fvmptd 6178 . . 3 (𝜑 → ((𝐻𝐴)‘𝐵) = (𝑗𝑋 ↦ if(𝑗𝑌, (𝐵𝑗), if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴))))
3837feq1d 5925 . 2 (𝜑 → (((𝐻𝐴)‘𝐵):𝑋⟶ℝ ↔ (𝑗𝑋 ↦ if(𝑗𝑌, (𝐵𝑗), if((𝐵𝑗) ≤ 𝐴, (𝐵𝑗), 𝐴))):𝑋⟶ℝ))
398, 38mpbird 245 1 (𝜑 → ((𝐻𝐴)‘𝐵):𝑋⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382   = wceq 1474  wcel 1975  Vcvv 3168  ifcif 4031   class class class wbr 4573  cmpt 4633  wf 5782  cfv 5786  (class class class)co 6523  𝑚 cmap 7717  cr 9787  cle 9927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-rep 4689  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820  ax-cnex 9844  ax-resscn 9845
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-ral 2896  df-rex 2897  df-reu 2898  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-op 4127  df-uni 4363  df-iun 4447  df-br 4574  df-opab 4634  df-mpt 4635  df-id 4939  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-ov 6526  df-oprab 6527  df-mpt2 6528  df-map 7719
This theorem is referenced by:  hsphoidmvle2  39275  hsphoidmvle  39276  sge0hsphoire  39279  hoidmvlelem1  39285  hoidmvlelem2  39286  hoidmvlelem4  39288  hspmbllem1  39316  hspmbllem2  39317
  Copyright terms: Public domain W3C validator