Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0hsphoire Structured version   Visualization version   GIF version

Theorem sge0hsphoire 42878
Description: If the generalized sum of dimensional volumes of n-dimensional half-open intervals is finite, then the sum stays finite if every half-open interval is intersected with a half-space. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
sge0hsphoire.l 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
sge0hsphoire.f (𝜑𝑌 ∈ Fin)
sge0hsphoire.z (𝜑𝑍 ∈ (𝑊𝑌))
sge0hsphoire.w 𝑊 = (𝑌 ∪ {𝑍})
sge0hsphoire.c (𝜑𝐶:ℕ⟶(ℝ ↑m 𝑊))
sge0hsphoire.d (𝜑𝐷:ℕ⟶(ℝ ↑m 𝑊))
sge0hsphoire.r (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) ∈ ℝ)
sge0hsphoire.h 𝐻 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (𝑗𝑊 ↦ if(𝑗𝑌, (𝑐𝑗), if((𝑐𝑗) ≤ 𝑥, (𝑐𝑗), 𝑥)))))
sge0hsphoire.s (𝜑𝑆 ∈ ℝ)
Assertion
Ref Expression
sge0hsphoire (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑆)‘(𝐷𝑗))))) ∈ ℝ)
Distinct variable groups:   𝐶,𝑎,𝑏,𝑘   𝐷,𝑎,𝑏,𝑘   𝐷,𝑐,𝑘   𝐻,𝑎,𝑏,𝑘   𝑆,𝑎,𝑏,𝑘,𝑥   𝑆,𝑐,𝑥   𝑊,𝑎,𝑏,𝑗,𝑘,𝑥   𝑊,𝑐,𝑗   𝑌,𝑐,𝑗,𝑥   𝑍,𝑐,𝑘,𝑥   𝜑,𝑎,𝑏,𝑗,𝑘,𝑥   𝜑,𝑐
Allowed substitution hints:   𝐶(𝑥,𝑗,𝑐)   𝐷(𝑥,𝑗)   𝑆(𝑗)   𝐻(𝑥,𝑗,𝑐)   𝐿(𝑥,𝑗,𝑘,𝑎,𝑏,𝑐)   𝑌(𝑘,𝑎,𝑏)   𝑍(𝑗,𝑎,𝑏)

Proof of Theorem sge0hsphoire
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 nnex 11646 . . . 4 ℕ ∈ V
21a1i 11 . . 3 (𝜑 → ℕ ∈ V)
3 sge0hsphoire.l . . . . . 6 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑m 𝑥), 𝑏 ∈ (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘𝑥 (vol‘((𝑎𝑘)[,)(𝑏𝑘))))))
4 sge0hsphoire.w . . . . . . . 8 𝑊 = (𝑌 ∪ {𝑍})
5 sge0hsphoire.f . . . . . . . . 9 (𝜑𝑌 ∈ Fin)
6 snfi 8596 . . . . . . . . . 10 {𝑍} ∈ Fin
76a1i 11 . . . . . . . . 9 (𝜑 → {𝑍} ∈ Fin)
8 unfi 8787 . . . . . . . . 9 ((𝑌 ∈ Fin ∧ {𝑍} ∈ Fin) → (𝑌 ∪ {𝑍}) ∈ Fin)
95, 7, 8syl2anc 586 . . . . . . . 8 (𝜑 → (𝑌 ∪ {𝑍}) ∈ Fin)
104, 9eqeltrid 2919 . . . . . . 7 (𝜑𝑊 ∈ Fin)
1110adantr 483 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → 𝑊 ∈ Fin)
12 sge0hsphoire.c . . . . . . . 8 (𝜑𝐶:ℕ⟶(ℝ ↑m 𝑊))
1312ffvelrnda 6853 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (𝐶𝑗) ∈ (ℝ ↑m 𝑊))
14 elmapi 8430 . . . . . . 7 ((𝐶𝑗) ∈ (ℝ ↑m 𝑊) → (𝐶𝑗):𝑊⟶ℝ)
1513, 14syl 17 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → (𝐶𝑗):𝑊⟶ℝ)
16 sge0hsphoire.h . . . . . . . 8 𝐻 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (𝑗𝑊 ↦ if(𝑗𝑌, (𝑐𝑗), if((𝑐𝑗) ≤ 𝑥, (𝑐𝑗), 𝑥)))))
17 eleq1w 2897 . . . . . . . . . . . 12 (𝑗 = → (𝑗𝑌𝑌))
18 fveq2 6672 . . . . . . . . . . . 12 (𝑗 = → (𝑐𝑗) = (𝑐))
1918breq1d 5078 . . . . . . . . . . . . 13 (𝑗 = → ((𝑐𝑗) ≤ 𝑥 ↔ (𝑐) ≤ 𝑥))
2019, 18ifbieq1d 4492 . . . . . . . . . . . 12 (𝑗 = → if((𝑐𝑗) ≤ 𝑥, (𝑐𝑗), 𝑥) = if((𝑐) ≤ 𝑥, (𝑐), 𝑥))
2117, 18, 20ifbieq12d 4496 . . . . . . . . . . 11 (𝑗 = → if(𝑗𝑌, (𝑐𝑗), if((𝑐𝑗) ≤ 𝑥, (𝑐𝑗), 𝑥)) = if(𝑌, (𝑐), if((𝑐) ≤ 𝑥, (𝑐), 𝑥)))
2221cbvmptv 5171 . . . . . . . . . 10 (𝑗𝑊 ↦ if(𝑗𝑌, (𝑐𝑗), if((𝑐𝑗) ≤ 𝑥, (𝑐𝑗), 𝑥))) = (𝑊 ↦ if(𝑌, (𝑐), if((𝑐) ≤ 𝑥, (𝑐), 𝑥)))
2322mpteq2i 5160 . . . . . . . . 9 (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (𝑗𝑊 ↦ if(𝑗𝑌, (𝑐𝑗), if((𝑐𝑗) ≤ 𝑥, (𝑐𝑗), 𝑥)))) = (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (𝑊 ↦ if(𝑌, (𝑐), if((𝑐) ≤ 𝑥, (𝑐), 𝑥))))
2423mpteq2i 5160 . . . . . . . 8 (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (𝑗𝑊 ↦ if(𝑗𝑌, (𝑐𝑗), if((𝑐𝑗) ≤ 𝑥, (𝑐𝑗), 𝑥))))) = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (𝑊 ↦ if(𝑌, (𝑐), if((𝑐) ≤ 𝑥, (𝑐), 𝑥)))))
2516, 24eqtri 2846 . . . . . . 7 𝐻 = (𝑥 ∈ ℝ ↦ (𝑐 ∈ (ℝ ↑m 𝑊) ↦ (𝑊 ↦ if(𝑌, (𝑐), if((𝑐) ≤ 𝑥, (𝑐), 𝑥)))))
26 sge0hsphoire.s . . . . . . . 8 (𝜑𝑆 ∈ ℝ)
2726adantr 483 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → 𝑆 ∈ ℝ)
28 sge0hsphoire.d . . . . . . . . 9 (𝜑𝐷:ℕ⟶(ℝ ↑m 𝑊))
2928ffvelrnda 6853 . . . . . . . 8 ((𝜑𝑗 ∈ ℕ) → (𝐷𝑗) ∈ (ℝ ↑m 𝑊))
30 elmapi 8430 . . . . . . . 8 ((𝐷𝑗) ∈ (ℝ ↑m 𝑊) → (𝐷𝑗):𝑊⟶ℝ)
3129, 30syl 17 . . . . . . 7 ((𝜑𝑗 ∈ ℕ) → (𝐷𝑗):𝑊⟶ℝ)
3225, 27, 11, 31hsphoif 42865 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → ((𝐻𝑆)‘(𝐷𝑗)):𝑊⟶ℝ)
333, 11, 15, 32hoidmvcl 42871 . . . . 5 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)(𝐿𝑊)((𝐻𝑆)‘(𝐷𝑗))) ∈ (0[,)+∞))
34 eqid 2823 . . . . 5 (𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑆)‘(𝐷𝑗)))) = (𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑆)‘(𝐷𝑗))))
3533, 34fmptd 6880 . . . 4 (𝜑 → (𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑆)‘(𝐷𝑗)))):ℕ⟶(0[,)+∞))
36 icossicc 12827 . . . . 5 (0[,)+∞) ⊆ (0[,]+∞)
3736a1i 11 . . . 4 (𝜑 → (0[,)+∞) ⊆ (0[,]+∞))
3835, 37fssd 6530 . . 3 (𝜑 → (𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑆)‘(𝐷𝑗)))):ℕ⟶(0[,]+∞))
392, 38sge0cl 42670 . 2 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑆)‘(𝐷𝑗))))) ∈ (0[,]+∞))
402, 38sge0xrcl 42674 . . 3 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑆)‘(𝐷𝑗))))) ∈ ℝ*)
41 pnfxr 10697 . . . 4 +∞ ∈ ℝ*
4241a1i 11 . . 3 (𝜑 → +∞ ∈ ℝ*)
43 sge0hsphoire.r . . . . 5 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) ∈ ℝ)
4443rexrd 10693 . . . 4 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) ∈ ℝ*)
45 nfv 1915 . . . . 5 𝑗𝜑
4636, 33sseldi 3967 . . . . 5 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)(𝐿𝑊)((𝐻𝑆)‘(𝐷𝑗))) ∈ (0[,]+∞))
473, 11, 15, 31hoidmvcl 42871 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)) ∈ (0[,)+∞))
4836, 47sseldi 3967 . . . . 5 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)) ∈ (0[,]+∞))
49 sge0hsphoire.z . . . . . . 7 (𝜑𝑍 ∈ (𝑊𝑌))
5049adantr 483 . . . . . 6 ((𝜑𝑗 ∈ ℕ) → 𝑍 ∈ (𝑊𝑌))
513, 11, 50, 4, 27, 25, 15, 31hsphoidmvle 42875 . . . . 5 ((𝜑𝑗 ∈ ℕ) → ((𝐶𝑗)(𝐿𝑊)((𝐻𝑆)‘(𝐷𝑗))) ≤ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))
5245, 2, 46, 48, 51sge0lempt 42699 . . . 4 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑆)‘(𝐷𝑗))))) ≤ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))))
5343ltpnfd 12519 . . . 4 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)(𝐷𝑗)))) < +∞)
5440, 44, 42, 52, 53xrlelttrd 12556 . . 3 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑆)‘(𝐷𝑗))))) < +∞)
5540, 42, 54xrltned 41632 . 2 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑆)‘(𝐷𝑗))))) ≠ +∞)
56 ge0xrre 41814 . 2 (((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑆)‘(𝐷𝑗))))) ∈ (0[,]+∞) ∧ (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑆)‘(𝐷𝑗))))) ≠ +∞) → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑆)‘(𝐷𝑗))))) ∈ ℝ)
5739, 55, 56syl2anc 586 1 (𝜑 → (Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶𝑗)(𝐿𝑊)((𝐻𝑆)‘(𝐷𝑗))))) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3018  Vcvv 3496  cdif 3935  cun 3936  wss 3938  c0 4293  ifcif 4469  {csn 4569   class class class wbr 5068  cmpt 5148  wf 6353  cfv 6357  (class class class)co 7158  cmpo 7160  m cmap 8408  Fincfn 8511  cr 10538  0cc0 10539  +∞cpnf 10674  *cxr 10676  cle 10678  cn 11640  [,)cico 12743  [,]cicc 12744  cprod 15261  volcvol 24066  Σ^csumge0 42651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-dju 9332  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-rlim 14848  df-sum 15045  df-prod 15262  df-rest 16698  df-topgen 16719  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-top 21504  df-topon 21521  df-bases 21556  df-cmp 21997  df-ovol 24067  df-vol 24068  df-sumge0 42652
This theorem is referenced by:  hoidmvlelem1  42884  hoidmvlelem2  42885
  Copyright terms: Public domain W3C validator