MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iedgval Structured version   Visualization version   GIF version

Theorem iedgval 26772
Description: The set of indexed edges of a graph. (Contributed by AV, 21-Sep-2020.)
Assertion
Ref Expression
iedgval (iEdg‘𝐺) = if(𝐺 ∈ (V × V), (2nd𝐺), (.ef‘𝐺))

Proof of Theorem iedgval
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2900 . . . 4 (𝑔 = 𝐺 → (𝑔 ∈ (V × V) ↔ 𝐺 ∈ (V × V)))
2 fveq2 6656 . . . 4 (𝑔 = 𝐺 → (2nd𝑔) = (2nd𝐺))
3 fveq2 6656 . . . 4 (𝑔 = 𝐺 → (.ef‘𝑔) = (.ef‘𝐺))
41, 2, 3ifbieq12d 4480 . . 3 (𝑔 = 𝐺 → if(𝑔 ∈ (V × V), (2nd𝑔), (.ef‘𝑔)) = if(𝐺 ∈ (V × V), (2nd𝐺), (.ef‘𝐺)))
5 df-iedg 26770 . . 3 iEdg = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (2nd𝑔), (.ef‘𝑔)))
6 fvex 6669 . . . 4 (2nd𝐺) ∈ V
7 fvex 6669 . . . 4 (.ef‘𝐺) ∈ V
86, 7ifex 4501 . . 3 if(𝐺 ∈ (V × V), (2nd𝐺), (.ef‘𝐺)) ∈ V
94, 5, 8fvmpt 6754 . 2 (𝐺 ∈ V → (iEdg‘𝐺) = if(𝐺 ∈ (V × V), (2nd𝐺), (.ef‘𝐺)))
10 fvprc 6649 . . 3 𝐺 ∈ V → (.ef‘𝐺) = ∅)
11 prcnel 3510 . . . 4 𝐺 ∈ V → ¬ 𝐺 ∈ (V × V))
1211iffalsed 4464 . . 3 𝐺 ∈ V → if(𝐺 ∈ (V × V), (2nd𝐺), (.ef‘𝐺)) = (.ef‘𝐺))
13 fvprc 6649 . . 3 𝐺 ∈ V → (iEdg‘𝐺) = ∅)
1410, 12, 133eqtr4rd 2867 . 2 𝐺 ∈ V → (iEdg‘𝐺) = if(𝐺 ∈ (V × V), (2nd𝐺), (.ef‘𝐺)))
159, 14pm2.61i 184 1 (iEdg‘𝐺) = if(𝐺 ∈ (V × V), (2nd𝐺), (.ef‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1537  wcel 2114  Vcvv 3486  c0 4279  ifcif 4453   × cxp 5539  cfv 6341  2nd c2nd 7674  .efcedgf 26760  iEdgciedg 26768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5189  ax-nul 5196  ax-pow 5252  ax-pr 5316
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3488  df-sbc 3764  df-dif 3927  df-un 3929  df-in 3931  df-ss 3940  df-nul 4280  df-if 4454  df-sn 4554  df-pr 4556  df-op 4560  df-uni 4825  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5446  df-xp 5547  df-rel 5548  df-cnv 5549  df-co 5550  df-dm 5551  df-iota 6300  df-fun 6343  df-fv 6349  df-iedg 26770
This theorem is referenced by:  opiedgval  26777  funiedgdmge2val  26783  funiedgdm2val  26785  snstriedgval  26809  iedgval0  26811
  Copyright terms: Public domain W3C validator