MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infsupprpr Structured version   Visualization version   GIF version

Theorem infsupprpr 8968
Description: The infimum of a proper pair is less than the supremum of this pair. (Contributed by AV, 13-Mar-2023.)
Assertion
Ref Expression
infsupprpr ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → inf({𝐵, 𝐶}, 𝐴, 𝑅)𝑅sup({𝐵, 𝐶}, 𝐴, 𝑅))

Proof of Theorem infsupprpr
StepHypRef Expression
1 solin 5498 . . . 4 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝑅𝐶𝐵 = 𝐶𝐶𝑅𝐵))
213adantr3 1167 . . 3 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → (𝐵𝑅𝐶𝐵 = 𝐶𝐶𝑅𝐵))
3 iftrue 4473 . . . . . . 7 (𝐵𝑅𝐶 → if(𝐵𝑅𝐶, 𝐵, 𝐶) = 𝐵)
43adantr 483 . . . . . 6 ((𝐵𝑅𝐶 ∧ (𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐵𝐶))) → if(𝐵𝑅𝐶, 𝐵, 𝐶) = 𝐵)
5 sotric 5501 . . . . . . . . 9 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝑅𝐶 ↔ ¬ (𝐵 = 𝐶𝐶𝑅𝐵)))
653adantr3 1167 . . . . . . . 8 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → (𝐵𝑅𝐶 ↔ ¬ (𝐵 = 𝐶𝐶𝑅𝐵)))
76biimpac 481 . . . . . . 7 ((𝐵𝑅𝐶 ∧ (𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐵𝐶))) → ¬ (𝐵 = 𝐶𝐶𝑅𝐵))
8 ioran 980 . . . . . . . 8 (¬ (𝐵 = 𝐶𝐶𝑅𝐵) ↔ (¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝑅𝐵))
9 simprl 769 . . . . . . . . . 10 ((¬ 𝐶𝑅𝐵 ∧ (𝐵𝑅𝐶 ∧ (𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)))) → 𝐵𝑅𝐶)
10 iffalse 4476 . . . . . . . . . . 11 𝐶𝑅𝐵 → if(𝐶𝑅𝐵, 𝐵, 𝐶) = 𝐶)
1110adantr 483 . . . . . . . . . 10 ((¬ 𝐶𝑅𝐵 ∧ (𝐵𝑅𝐶 ∧ (𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)))) → if(𝐶𝑅𝐵, 𝐵, 𝐶) = 𝐶)
129, 11breqtrrd 5094 . . . . . . . . 9 ((¬ 𝐶𝑅𝐵 ∧ (𝐵𝑅𝐶 ∧ (𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)))) → 𝐵𝑅if(𝐶𝑅𝐵, 𝐵, 𝐶))
1312ex 415 . . . . . . . 8 𝐶𝑅𝐵 → ((𝐵𝑅𝐶 ∧ (𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐵𝐶))) → 𝐵𝑅if(𝐶𝑅𝐵, 𝐵, 𝐶)))
148, 13simplbiim 507 . . . . . . 7 (¬ (𝐵 = 𝐶𝐶𝑅𝐵) → ((𝐵𝑅𝐶 ∧ (𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐵𝐶))) → 𝐵𝑅if(𝐶𝑅𝐵, 𝐵, 𝐶)))
157, 14mpcom 38 . . . . . 6 ((𝐵𝑅𝐶 ∧ (𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐵𝐶))) → 𝐵𝑅if(𝐶𝑅𝐵, 𝐵, 𝐶))
164, 15eqbrtrd 5088 . . . . 5 ((𝐵𝑅𝐶 ∧ (𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐵𝐶))) → if(𝐵𝑅𝐶, 𝐵, 𝐶)𝑅if(𝐶𝑅𝐵, 𝐵, 𝐶))
1716ex 415 . . . 4 (𝐵𝑅𝐶 → ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → if(𝐵𝑅𝐶, 𝐵, 𝐶)𝑅if(𝐶𝑅𝐵, 𝐵, 𝐶)))
18 eqneqall 3027 . . . . . . 7 (𝐵 = 𝐶 → (𝐵𝐶 → if(𝐵𝑅𝐶, 𝐵, 𝐶)𝑅if(𝐶𝑅𝐵, 𝐵, 𝐶)))
19182a1d 26 . . . . . 6 (𝐵 = 𝐶 → (𝐵𝐴 → (𝐶𝐴 → (𝐵𝐶 → if(𝐵𝑅𝐶, 𝐵, 𝐶)𝑅if(𝐶𝑅𝐵, 𝐵, 𝐶)))))
20193impd 1344 . . . . 5 (𝐵 = 𝐶 → ((𝐵𝐴𝐶𝐴𝐵𝐶) → if(𝐵𝑅𝐶, 𝐵, 𝐶)𝑅if(𝐶𝑅𝐵, 𝐵, 𝐶)))
2120adantld 493 . . . 4 (𝐵 = 𝐶 → ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → if(𝐵𝑅𝐶, 𝐵, 𝐶)𝑅if(𝐶𝑅𝐵, 𝐵, 𝐶)))
22 pm3.22 462 . . . . . . . . 9 ((𝐵𝐴𝐶𝐴) → (𝐶𝐴𝐵𝐴))
23223adant3 1128 . . . . . . . 8 ((𝐵𝐴𝐶𝐴𝐵𝐶) → (𝐶𝐴𝐵𝐴))
24 sotric 5501 . . . . . . . . 9 ((𝑅 Or 𝐴 ∧ (𝐶𝐴𝐵𝐴)) → (𝐶𝑅𝐵 ↔ ¬ (𝐶 = 𝐵𝐵𝑅𝐶)))
2524biimpd 231 . . . . . . . 8 ((𝑅 Or 𝐴 ∧ (𝐶𝐴𝐵𝐴)) → (𝐶𝑅𝐵 → ¬ (𝐶 = 𝐵𝐵𝑅𝐶)))
2623, 25sylan2 594 . . . . . . 7 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → (𝐶𝑅𝐵 → ¬ (𝐶 = 𝐵𝐵𝑅𝐶)))
2726impcom 410 . . . . . 6 ((𝐶𝑅𝐵 ∧ (𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐵𝐶))) → ¬ (𝐶 = 𝐵𝐵𝑅𝐶))
28 ioran 980 . . . . . . 7 (¬ (𝐶 = 𝐵𝐵𝑅𝐶) ↔ (¬ 𝐶 = 𝐵 ∧ ¬ 𝐵𝑅𝐶))
29 simpr 487 . . . . . . . . . 10 ((¬ 𝐵𝑅𝐶𝐶𝑅𝐵) → 𝐶𝑅𝐵)
30 iffalse 4476 . . . . . . . . . . 11 𝐵𝑅𝐶 → if(𝐵𝑅𝐶, 𝐵, 𝐶) = 𝐶)
31 iftrue 4473 . . . . . . . . . . 11 (𝐶𝑅𝐵 → if(𝐶𝑅𝐵, 𝐵, 𝐶) = 𝐵)
3230, 31breqan12d 5082 . . . . . . . . . 10 ((¬ 𝐵𝑅𝐶𝐶𝑅𝐵) → (if(𝐵𝑅𝐶, 𝐵, 𝐶)𝑅if(𝐶𝑅𝐵, 𝐵, 𝐶) ↔ 𝐶𝑅𝐵))
3329, 32mpbird 259 . . . . . . . . 9 ((¬ 𝐵𝑅𝐶𝐶𝑅𝐵) → if(𝐵𝑅𝐶, 𝐵, 𝐶)𝑅if(𝐶𝑅𝐵, 𝐵, 𝐶))
3433a1d 25 . . . . . . . 8 ((¬ 𝐵𝑅𝐶𝐶𝑅𝐵) → ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → if(𝐵𝑅𝐶, 𝐵, 𝐶)𝑅if(𝐶𝑅𝐵, 𝐵, 𝐶)))
3534expimpd 456 . . . . . . 7 𝐵𝑅𝐶 → ((𝐶𝑅𝐵 ∧ (𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐵𝐶))) → if(𝐵𝑅𝐶, 𝐵, 𝐶)𝑅if(𝐶𝑅𝐵, 𝐵, 𝐶)))
3628, 35simplbiim 507 . . . . . 6 (¬ (𝐶 = 𝐵𝐵𝑅𝐶) → ((𝐶𝑅𝐵 ∧ (𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐵𝐶))) → if(𝐵𝑅𝐶, 𝐵, 𝐶)𝑅if(𝐶𝑅𝐵, 𝐵, 𝐶)))
3727, 36mpcom 38 . . . . 5 ((𝐶𝑅𝐵 ∧ (𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐵𝐶))) → if(𝐵𝑅𝐶, 𝐵, 𝐶)𝑅if(𝐶𝑅𝐵, 𝐵, 𝐶))
3837ex 415 . . . 4 (𝐶𝑅𝐵 → ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → if(𝐵𝑅𝐶, 𝐵, 𝐶)𝑅if(𝐶𝑅𝐵, 𝐵, 𝐶)))
3917, 21, 383jaoi 1423 . . 3 ((𝐵𝑅𝐶𝐵 = 𝐶𝐶𝑅𝐵) → ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → if(𝐵𝑅𝐶, 𝐵, 𝐶)𝑅if(𝐶𝑅𝐵, 𝐵, 𝐶)))
402, 39mpcom 38 . 2 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → if(𝐵𝑅𝐶, 𝐵, 𝐶)𝑅if(𝐶𝑅𝐵, 𝐵, 𝐶))
41 infpr 8967 . . . 4 ((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) → inf({𝐵, 𝐶}, 𝐴, 𝑅) = if(𝐵𝑅𝐶, 𝐵, 𝐶))
42 suppr 8935 . . . 4 ((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) → sup({𝐵, 𝐶}, 𝐴, 𝑅) = if(𝐶𝑅𝐵, 𝐵, 𝐶))
4341, 42breq12d 5079 . . 3 ((𝑅 Or 𝐴𝐵𝐴𝐶𝐴) → (inf({𝐵, 𝐶}, 𝐴, 𝑅)𝑅sup({𝐵, 𝐶}, 𝐴, 𝑅) ↔ if(𝐵𝑅𝐶, 𝐵, 𝐶)𝑅if(𝐶𝑅𝐵, 𝐵, 𝐶)))
44433adant3r3 1180 . 2 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → (inf({𝐵, 𝐶}, 𝐴, 𝑅)𝑅sup({𝐵, 𝐶}, 𝐴, 𝑅) ↔ if(𝐵𝑅𝐶, 𝐵, 𝐶)𝑅if(𝐶𝑅𝐵, 𝐵, 𝐶)))
4540, 44mpbird 259 1 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐵𝐶)) → inf({𝐵, 𝐶}, 𝐴, 𝑅)𝑅sup({𝐵, 𝐶}, 𝐴, 𝑅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3o 1082  w3a 1083   = wceq 1537  wcel 2114  wne 3016  ifcif 4467  {cpr 4569   class class class wbr 5066   Or wor 5473  supcsup 8904  infcinf 8905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-po 5474  df-so 5475  df-cnv 5563  df-iota 6314  df-riota 7114  df-sup 8906  df-inf 8907
This theorem is referenced by:  prproropf1olem2  43715
  Copyright terms: Public domain W3C validator