![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > breqan12d | Structured version Visualization version GIF version |
Description: Equality deduction for a binary relation. (Contributed by NM, 8-Feb-1996.) |
Ref | Expression |
---|---|
breq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
breqan12i.2 | ⊢ (𝜓 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
breqan12d | ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | breqan12i.2 | . 2 ⊢ (𝜓 → 𝐶 = 𝐷) | |
3 | breq12 4809 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) | |
4 | 1, 2, 3 | syl2an 495 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 class class class wbr 4804 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-br 4805 |
This theorem is referenced by: breqan12rd 4821 soisores 6741 isoid 6743 isores3 6749 isoini2 6753 ofrfval 7071 fnwelem 7461 fnse 7463 wemaplem1 8618 r0weon 9045 sornom 9311 enqbreq2 9954 nqereu 9963 ordpinq 9977 lterpq 10004 ltresr2 10174 axpre-ltadd 10200 leltadd 10724 lemul1a 11089 negiso 11215 xltneg 12261 lt2sq 13151 le2sq 13152 sqrtle 14220 prdsleval 16359 efgcpbllema 18387 iducn 22308 icopnfhmeo 22963 iccpnfhmeo 22965 xrhmeo 22966 reefiso 24421 sinord 24500 logltb 24566 logccv 24629 atanord 24874 birthdaylem3 24900 lgsquadlem3 25327 mddmd 29490 xrge0iifiso 30311 erdszelem4 31504 erdszelem8 31508 cgrextend 32442 matunitlindf 33738 idlaut 35903 monotuz 38026 monotoddzzfi 38027 expmordi 38032 wepwsolem 38132 fnwe2val 38139 aomclem8 38151 |
Copyright terms: Public domain | W3C validator |