MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intgru Structured version   Visualization version   GIF version

Theorem intgru 10222
Description: The intersection of a family of universes is a universe. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
intgru ((𝐴 ⊆ Univ ∧ 𝐴 ≠ ∅) → 𝐴 ∈ Univ)

Proof of Theorem intgru
Dummy variables 𝑥 𝑢 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 487 . . 3 ((𝐴 ⊆ Univ ∧ 𝐴 ≠ ∅) → 𝐴 ≠ ∅)
2 intex 5226 . . 3 (𝐴 ≠ ∅ ↔ 𝐴 ∈ V)
31, 2sylib 220 . 2 ((𝐴 ⊆ Univ ∧ 𝐴 ≠ ∅) → 𝐴 ∈ V)
4 dfss3 3944 . . . . 5 (𝐴 ⊆ Univ ↔ ∀𝑢𝐴 𝑢 ∈ Univ)
5 grutr 10201 . . . . . 6 (𝑢 ∈ Univ → Tr 𝑢)
65ralimi 3160 . . . . 5 (∀𝑢𝐴 𝑢 ∈ Univ → ∀𝑢𝐴 Tr 𝑢)
74, 6sylbi 219 . . . 4 (𝐴 ⊆ Univ → ∀𝑢𝐴 Tr 𝑢)
8 trint 5174 . . . 4 (∀𝑢𝐴 Tr 𝑢 → Tr 𝐴)
97, 8syl 17 . . 3 (𝐴 ⊆ Univ → Tr 𝐴)
109adantr 483 . 2 ((𝐴 ⊆ Univ ∧ 𝐴 ≠ ∅) → Tr 𝐴)
11 grupw 10203 . . . . . . . . . 10 ((𝑢 ∈ Univ ∧ 𝑥𝑢) → 𝒫 𝑥𝑢)
1211ex 415 . . . . . . . . 9 (𝑢 ∈ Univ → (𝑥𝑢 → 𝒫 𝑥𝑢))
1312ral2imi 3156 . . . . . . . 8 (∀𝑢𝐴 𝑢 ∈ Univ → (∀𝑢𝐴 𝑥𝑢 → ∀𝑢𝐴 𝒫 𝑥𝑢))
14 vex 3489 . . . . . . . . 9 𝑥 ∈ V
1514elint2 4869 . . . . . . . 8 (𝑥 𝐴 ↔ ∀𝑢𝐴 𝑥𝑢)
16 vpwex 5264 . . . . . . . . 9 𝒫 𝑥 ∈ V
1716elint2 4869 . . . . . . . 8 (𝒫 𝑥 𝐴 ↔ ∀𝑢𝐴 𝒫 𝑥𝑢)
1813, 15, 173imtr4g 298 . . . . . . 7 (∀𝑢𝐴 𝑢 ∈ Univ → (𝑥 𝐴 → 𝒫 𝑥 𝐴))
1918imp 409 . . . . . 6 ((∀𝑢𝐴 𝑢 ∈ Univ ∧ 𝑥 𝐴) → 𝒫 𝑥 𝐴)
2019adantlr 713 . . . . 5 (((∀𝑢𝐴 𝑢 ∈ Univ ∧ 𝐴 ≠ ∅) ∧ 𝑥 𝐴) → 𝒫 𝑥 𝐴)
21 r19.26 3170 . . . . . . . . . 10 (∀𝑢𝐴 (𝑢 ∈ Univ ∧ 𝑥𝑢) ↔ (∀𝑢𝐴 𝑢 ∈ Univ ∧ ∀𝑢𝐴 𝑥𝑢))
22 grupr 10205 . . . . . . . . . . . 12 ((𝑢 ∈ Univ ∧ 𝑥𝑢𝑦𝑢) → {𝑥, 𝑦} ∈ 𝑢)
23223expia 1117 . . . . . . . . . . 11 ((𝑢 ∈ Univ ∧ 𝑥𝑢) → (𝑦𝑢 → {𝑥, 𝑦} ∈ 𝑢))
2423ral2imi 3156 . . . . . . . . . 10 (∀𝑢𝐴 (𝑢 ∈ Univ ∧ 𝑥𝑢) → (∀𝑢𝐴 𝑦𝑢 → ∀𝑢𝐴 {𝑥, 𝑦} ∈ 𝑢))
2521, 24sylbir 237 . . . . . . . . 9 ((∀𝑢𝐴 𝑢 ∈ Univ ∧ ∀𝑢𝐴 𝑥𝑢) → (∀𝑢𝐴 𝑦𝑢 → ∀𝑢𝐴 {𝑥, 𝑦} ∈ 𝑢))
26 vex 3489 . . . . . . . . . 10 𝑦 ∈ V
2726elint2 4869 . . . . . . . . 9 (𝑦 𝐴 ↔ ∀𝑢𝐴 𝑦𝑢)
28 prex 5319 . . . . . . . . . 10 {𝑥, 𝑦} ∈ V
2928elint2 4869 . . . . . . . . 9 ({𝑥, 𝑦} ∈ 𝐴 ↔ ∀𝑢𝐴 {𝑥, 𝑦} ∈ 𝑢)
3025, 27, 293imtr4g 298 . . . . . . . 8 ((∀𝑢𝐴 𝑢 ∈ Univ ∧ ∀𝑢𝐴 𝑥𝑢) → (𝑦 𝐴 → {𝑥, 𝑦} ∈ 𝐴))
3115, 30sylan2b 595 . . . . . . 7 ((∀𝑢𝐴 𝑢 ∈ Univ ∧ 𝑥 𝐴) → (𝑦 𝐴 → {𝑥, 𝑦} ∈ 𝐴))
3231ralrimiv 3181 . . . . . 6 ((∀𝑢𝐴 𝑢 ∈ Univ ∧ 𝑥 𝐴) → ∀𝑦 𝐴{𝑥, 𝑦} ∈ 𝐴)
3332adantlr 713 . . . . 5 (((∀𝑢𝐴 𝑢 ∈ Univ ∧ 𝐴 ≠ ∅) ∧ 𝑥 𝐴) → ∀𝑦 𝐴{𝑥, 𝑦} ∈ 𝐴)
34 elmapg 8405 . . . . . . . . . 10 (( 𝐴 ∈ V ∧ 𝑥 ∈ V) → (𝑦 ∈ ( 𝐴m 𝑥) ↔ 𝑦:𝑥 𝐴))
3534elvd 3492 . . . . . . . . 9 ( 𝐴 ∈ V → (𝑦 ∈ ( 𝐴m 𝑥) ↔ 𝑦:𝑥 𝐴))
362, 35sylbi 219 . . . . . . . 8 (𝐴 ≠ ∅ → (𝑦 ∈ ( 𝐴m 𝑥) ↔ 𝑦:𝑥 𝐴))
3736ad2antlr 725 . . . . . . 7 (((∀𝑢𝐴 𝑢 ∈ Univ ∧ 𝐴 ≠ ∅) ∧ 𝑥 𝐴) → (𝑦 ∈ ( 𝐴m 𝑥) ↔ 𝑦:𝑥 𝐴))
38 intss1 4877 . . . . . . . . . . . 12 (𝑢𝐴 𝐴𝑢)
39 fss 6513 . . . . . . . . . . . 12 ((𝑦:𝑥 𝐴 𝐴𝑢) → 𝑦:𝑥𝑢)
4038, 39sylan2 594 . . . . . . . . . . 11 ((𝑦:𝑥 𝐴𝑢𝐴) → 𝑦:𝑥𝑢)
4140ralrimiva 3182 . . . . . . . . . 10 (𝑦:𝑥 𝐴 → ∀𝑢𝐴 𝑦:𝑥𝑢)
42 gruurn 10206 . . . . . . . . . . . . . 14 ((𝑢 ∈ Univ ∧ 𝑥𝑢𝑦:𝑥𝑢) → ran 𝑦𝑢)
43423expia 1117 . . . . . . . . . . . . 13 ((𝑢 ∈ Univ ∧ 𝑥𝑢) → (𝑦:𝑥𝑢 ran 𝑦𝑢))
4443ral2imi 3156 . . . . . . . . . . . 12 (∀𝑢𝐴 (𝑢 ∈ Univ ∧ 𝑥𝑢) → (∀𝑢𝐴 𝑦:𝑥𝑢 → ∀𝑢𝐴 ran 𝑦𝑢))
4521, 44sylbir 237 . . . . . . . . . . 11 ((∀𝑢𝐴 𝑢 ∈ Univ ∧ ∀𝑢𝐴 𝑥𝑢) → (∀𝑢𝐴 𝑦:𝑥𝑢 → ∀𝑢𝐴 ran 𝑦𝑢))
4615, 45sylan2b 595 . . . . . . . . . 10 ((∀𝑢𝐴 𝑢 ∈ Univ ∧ 𝑥 𝐴) → (∀𝑢𝐴 𝑦:𝑥𝑢 → ∀𝑢𝐴 ran 𝑦𝑢))
4741, 46syl5 34 . . . . . . . . 9 ((∀𝑢𝐴 𝑢 ∈ Univ ∧ 𝑥 𝐴) → (𝑦:𝑥 𝐴 → ∀𝑢𝐴 ran 𝑦𝑢))
4826rnex 7603 . . . . . . . . . . 11 ran 𝑦 ∈ V
4948uniex 7453 . . . . . . . . . 10 ran 𝑦 ∈ V
5049elint2 4869 . . . . . . . . 9 ( ran 𝑦 𝐴 ↔ ∀𝑢𝐴 ran 𝑦𝑢)
5147, 50syl6ibr 254 . . . . . . . 8 ((∀𝑢𝐴 𝑢 ∈ Univ ∧ 𝑥 𝐴) → (𝑦:𝑥 𝐴 ran 𝑦 𝐴))
5251adantlr 713 . . . . . . 7 (((∀𝑢𝐴 𝑢 ∈ Univ ∧ 𝐴 ≠ ∅) ∧ 𝑥 𝐴) → (𝑦:𝑥 𝐴 ran 𝑦 𝐴))
5337, 52sylbid 242 . . . . . 6 (((∀𝑢𝐴 𝑢 ∈ Univ ∧ 𝐴 ≠ ∅) ∧ 𝑥 𝐴) → (𝑦 ∈ ( 𝐴m 𝑥) → ran 𝑦 𝐴))
5453ralrimiv 3181 . . . . 5 (((∀𝑢𝐴 𝑢 ∈ Univ ∧ 𝐴 ≠ ∅) ∧ 𝑥 𝐴) → ∀𝑦 ∈ ( 𝐴m 𝑥) ran 𝑦 𝐴)
5520, 33, 543jca 1124 . . . 4 (((∀𝑢𝐴 𝑢 ∈ Univ ∧ 𝐴 ≠ ∅) ∧ 𝑥 𝐴) → (𝒫 𝑥 𝐴 ∧ ∀𝑦 𝐴{𝑥, 𝑦} ∈ 𝐴 ∧ ∀𝑦 ∈ ( 𝐴m 𝑥) ran 𝑦 𝐴))
5655ralrimiva 3182 . . 3 ((∀𝑢𝐴 𝑢 ∈ Univ ∧ 𝐴 ≠ ∅) → ∀𝑥 𝐴(𝒫 𝑥 𝐴 ∧ ∀𝑦 𝐴{𝑥, 𝑦} ∈ 𝐴 ∧ ∀𝑦 ∈ ( 𝐴m 𝑥) ran 𝑦 𝐴))
574, 56sylanb 583 . 2 ((𝐴 ⊆ Univ ∧ 𝐴 ≠ ∅) → ∀𝑥 𝐴(𝒫 𝑥 𝐴 ∧ ∀𝑦 𝐴{𝑥, 𝑦} ∈ 𝐴 ∧ ∀𝑦 ∈ ( 𝐴m 𝑥) ran 𝑦 𝐴))
58 elgrug 10200 . . 3 ( 𝐴 ∈ V → ( 𝐴 ∈ Univ ↔ (Tr 𝐴 ∧ ∀𝑥 𝐴(𝒫 𝑥 𝐴 ∧ ∀𝑦 𝐴{𝑥, 𝑦} ∈ 𝐴 ∧ ∀𝑦 ∈ ( 𝐴m 𝑥) ran 𝑦 𝐴))))
5958biimpar 480 . 2 (( 𝐴 ∈ V ∧ (Tr 𝐴 ∧ ∀𝑥 𝐴(𝒫 𝑥 𝐴 ∧ ∀𝑦 𝐴{𝑥, 𝑦} ∈ 𝐴 ∧ ∀𝑦 ∈ ( 𝐴m 𝑥) ran 𝑦 𝐴))) → 𝐴 ∈ Univ)
603, 10, 57, 59syl12anc 834 1 ((𝐴 ⊆ Univ ∧ 𝐴 ≠ ∅) → 𝐴 ∈ Univ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083  wcel 2114  wne 3016  wral 3138  Vcvv 3486  wss 3924  c0 4279  𝒫 cpw 4525  {cpr 4555   cuni 4824   cint 4862  Tr wtr 5158  ran crn 5542  wf 6337  (class class class)co 7142  m cmap 8392  Univcgru 10198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5189  ax-nul 5196  ax-pow 5252  ax-pr 5316  ax-un 7447
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3488  df-sbc 3764  df-dif 3927  df-un 3929  df-in 3931  df-ss 3940  df-nul 4280  df-if 4454  df-pw 4527  df-sn 4554  df-pr 4556  df-op 4560  df-uni 4825  df-int 4863  df-iin 4908  df-br 5053  df-opab 5115  df-tr 5159  df-id 5446  df-xp 5547  df-rel 5548  df-cnv 5549  df-co 5550  df-dm 5551  df-rn 5552  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-fv 6349  df-ov 7145  df-oprab 7146  df-mpo 7147  df-map 8394  df-gru 10199
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator