HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  kbass5 Structured version   Visualization version   GIF version

Theorem kbass5 28828
Description: Dirac bra-ket associative law ( ∣ 𝐴 𝐵 ∣ )( ∣ 𝐶 𝐷 ∣ ) = (( ∣ 𝐴 𝐵 ∣ ) ∣ 𝐶⟩)⟨𝐷. (Contributed by NM, 30-May-2006.) (New usage is discouraged.)
Assertion
Ref Expression
kbass5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷)) = (((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷))

Proof of Theorem kbass5
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 kbval 28662 . . . . . . . 8 ((𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((𝐶 ketbra 𝐷)‘𝑥) = ((𝑥 ·ih 𝐷) · 𝐶))
213expa 1262 . . . . . . 7 (((𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝐶 ketbra 𝐷)‘𝑥) = ((𝑥 ·ih 𝐷) · 𝐶))
32adantll 749 . . . . . 6 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → ((𝐶 ketbra 𝐷)‘𝑥) = ((𝑥 ·ih 𝐷) · 𝐶))
43fveq2d 6152 . . . . 5 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → ((𝐴 ketbra 𝐵)‘((𝐶 ketbra 𝐷)‘𝑥)) = ((𝐴 ketbra 𝐵)‘((𝑥 ·ih 𝐷) · 𝐶)))
5 simplll 797 . . . . . 6 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → 𝐴 ∈ ℋ)
6 simpllr 798 . . . . . 6 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → 𝐵 ∈ ℋ)
7 simpr 477 . . . . . . . 8 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → 𝑥 ∈ ℋ)
8 simplrr 800 . . . . . . . 8 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → 𝐷 ∈ ℋ)
9 hicl 27786 . . . . . . . 8 ((𝑥 ∈ ℋ ∧ 𝐷 ∈ ℋ) → (𝑥 ·ih 𝐷) ∈ ℂ)
107, 8, 9syl2anc 692 . . . . . . 7 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → (𝑥 ·ih 𝐷) ∈ ℂ)
11 simplrl 799 . . . . . . 7 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → 𝐶 ∈ ℋ)
12 hvmulcl 27719 . . . . . . 7 (((𝑥 ·ih 𝐷) ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝑥 ·ih 𝐷) · 𝐶) ∈ ℋ)
1310, 11, 12syl2anc 692 . . . . . 6 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → ((𝑥 ·ih 𝐷) · 𝐶) ∈ ℋ)
14 kbval 28662 . . . . . 6 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ ((𝑥 ·ih 𝐷) · 𝐶) ∈ ℋ) → ((𝐴 ketbra 𝐵)‘((𝑥 ·ih 𝐷) · 𝐶)) = ((((𝑥 ·ih 𝐷) · 𝐶) ·ih 𝐵) · 𝐴))
155, 6, 13, 14syl3anc 1323 . . . . 5 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → ((𝐴 ketbra 𝐵)‘((𝑥 ·ih 𝐷) · 𝐶)) = ((((𝑥 ·ih 𝐷) · 𝐶) ·ih 𝐵) · 𝐴))
164, 15eqtrd 2655 . . . 4 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → ((𝐴 ketbra 𝐵)‘((𝐶 ketbra 𝐷)‘𝑥)) = ((((𝑥 ·ih 𝐷) · 𝐶) ·ih 𝐵) · 𝐴))
17 kbop 28661 . . . . . 6 ((𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ) → (𝐶 ketbra 𝐷): ℋ⟶ ℋ)
1817adantl 482 . . . . 5 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (𝐶 ketbra 𝐷): ℋ⟶ ℋ)
19 fvco3 6232 . . . . 5 (((𝐶 ketbra 𝐷): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷))‘𝑥) = ((𝐴 ketbra 𝐵)‘((𝐶 ketbra 𝐷)‘𝑥)))
2018, 19sylan 488 . . . 4 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → (((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷))‘𝑥) = ((𝐴 ketbra 𝐵)‘((𝐶 ketbra 𝐷)‘𝑥)))
21 kbval 28662 . . . . . . 7 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ketbra 𝐵)‘𝐶) = ((𝐶 ·ih 𝐵) · 𝐴))
225, 6, 11, 21syl3anc 1323 . . . . . 6 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → ((𝐴 ketbra 𝐵)‘𝐶) = ((𝐶 ·ih 𝐵) · 𝐴))
2322oveq2d 6620 . . . . 5 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → ((𝑥 ·ih 𝐷) · ((𝐴 ketbra 𝐵)‘𝐶)) = ((𝑥 ·ih 𝐷) · ((𝐶 ·ih 𝐵) · 𝐴)))
24 kbop 28661 . . . . . . . . 9 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ketbra 𝐵): ℋ⟶ ℋ)
2524ffvelrnda 6315 . . . . . . . 8 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ 𝐶 ∈ ℋ) → ((𝐴 ketbra 𝐵)‘𝐶) ∈ ℋ)
2625adantrr 752 . . . . . . 7 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 ketbra 𝐵)‘𝐶) ∈ ℋ)
2726adantr 481 . . . . . 6 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → ((𝐴 ketbra 𝐵)‘𝐶) ∈ ℋ)
28 kbval 28662 . . . . . 6 ((((𝐴 ketbra 𝐵)‘𝐶) ∈ ℋ ∧ 𝐷 ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷)‘𝑥) = ((𝑥 ·ih 𝐷) · ((𝐴 ketbra 𝐵)‘𝐶)))
2927, 8, 7, 28syl3anc 1323 . . . . 5 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → ((((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷)‘𝑥) = ((𝑥 ·ih 𝐷) · ((𝐴 ketbra 𝐵)‘𝐶)))
30 ax-his3 27790 . . . . . . . 8 (((𝑥 ·ih 𝐷) ∈ ℂ ∧ 𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((𝑥 ·ih 𝐷) · 𝐶) ·ih 𝐵) = ((𝑥 ·ih 𝐷) · (𝐶 ·ih 𝐵)))
3110, 11, 6, 30syl3anc 1323 . . . . . . 7 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → (((𝑥 ·ih 𝐷) · 𝐶) ·ih 𝐵) = ((𝑥 ·ih 𝐷) · (𝐶 ·ih 𝐵)))
3231oveq1d 6619 . . . . . 6 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → ((((𝑥 ·ih 𝐷) · 𝐶) ·ih 𝐵) · 𝐴) = (((𝑥 ·ih 𝐷) · (𝐶 ·ih 𝐵)) · 𝐴))
33 hicl 27786 . . . . . . . 8 ((𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐶 ·ih 𝐵) ∈ ℂ)
3411, 6, 33syl2anc 692 . . . . . . 7 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → (𝐶 ·ih 𝐵) ∈ ℂ)
35 ax-hvmulass 27713 . . . . . . 7 (((𝑥 ·ih 𝐷) ∈ ℂ ∧ (𝐶 ·ih 𝐵) ∈ ℂ ∧ 𝐴 ∈ ℋ) → (((𝑥 ·ih 𝐷) · (𝐶 ·ih 𝐵)) · 𝐴) = ((𝑥 ·ih 𝐷) · ((𝐶 ·ih 𝐵) · 𝐴)))
3610, 34, 5, 35syl3anc 1323 . . . . . 6 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → (((𝑥 ·ih 𝐷) · (𝐶 ·ih 𝐵)) · 𝐴) = ((𝑥 ·ih 𝐷) · ((𝐶 ·ih 𝐵) · 𝐴)))
3732, 36eqtrd 2655 . . . . 5 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → ((((𝑥 ·ih 𝐷) · 𝐶) ·ih 𝐵) · 𝐴) = ((𝑥 ·ih 𝐷) · ((𝐶 ·ih 𝐵) · 𝐴)))
3823, 29, 373eqtr4d 2665 . . . 4 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → ((((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷)‘𝑥) = ((((𝑥 ·ih 𝐷) · 𝐶) ·ih 𝐵) · 𝐴))
3916, 20, 383eqtr4d 2665 . . 3 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) ∧ 𝑥 ∈ ℋ) → (((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷))‘𝑥) = ((((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷)‘𝑥))
4039ralrimiva 2960 . 2 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ∀𝑥 ∈ ℋ (((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷))‘𝑥) = ((((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷)‘𝑥))
41 fco 6015 . . . 4 (((𝐴 ketbra 𝐵): ℋ⟶ ℋ ∧ (𝐶 ketbra 𝐷): ℋ⟶ ℋ) → ((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷)): ℋ⟶ ℋ)
4224, 17, 41syl2an 494 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷)): ℋ⟶ ℋ)
43 kbop 28661 . . . . 5 ((((𝐴 ketbra 𝐵)‘𝐶) ∈ ℋ ∧ 𝐷 ∈ ℋ) → (((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷): ℋ⟶ ℋ)
4425, 43sylan 488 . . . 4 ((((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ 𝐶 ∈ ℋ) ∧ 𝐷 ∈ ℋ) → (((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷): ℋ⟶ ℋ)
4544anasss 678 . . 3 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷): ℋ⟶ ℋ)
46 ffn 6002 . . . 4 (((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷)): ℋ⟶ ℋ → ((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷)) Fn ℋ)
47 ffn 6002 . . . 4 ((((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷): ℋ⟶ ℋ → (((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷) Fn ℋ)
48 eqfnfv 6267 . . . 4 ((((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷)) Fn ℋ ∧ (((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷) Fn ℋ) → (((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷)) = (((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷) ↔ ∀𝑥 ∈ ℋ (((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷))‘𝑥) = ((((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷)‘𝑥)))
4946, 47, 48syl2an 494 . . 3 ((((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷)): ℋ⟶ ℋ ∧ (((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷): ℋ⟶ ℋ) → (((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷)) = (((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷) ↔ ∀𝑥 ∈ ℋ (((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷))‘𝑥) = ((((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷)‘𝑥)))
5042, 45, 49syl2anc 692 . 2 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → (((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷)) = (((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷) ↔ ∀𝑥 ∈ ℋ (((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷))‘𝑥) = ((((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷)‘𝑥)))
5140, 50mpbird 247 1 (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ (𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ)) → ((𝐴 ketbra 𝐵) ∘ (𝐶 ketbra 𝐷)) = (((𝐴 ketbra 𝐵)‘𝐶) ketbra 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wral 2907  ccom 5078   Fn wfn 5842  wf 5843  cfv 5847  (class class class)co 6604  cc 9878   · cmul 9885  chil 27625   · csm 27627   ·ih csp 27628   ketbra ck 27663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-hilex 27705  ax-hfvmul 27711  ax-hvmulass 27713  ax-hfi 27785  ax-his3 27790
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-kb 28559
This theorem is referenced by:  kbass6  28829
  Copyright terms: Public domain W3C validator