![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > kqtop | Structured version Visualization version GIF version |
Description: The Kolmogorov quotient is a topology on the quotient set. (Contributed by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
kqtop | ⊢ (𝐽 ∈ Top ↔ (KQ‘𝐽) ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2651 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | toptopon 20770 | . . . 4 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) |
3 | eqid 2651 | . . . . 5 ⊢ (𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) = (𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}) | |
4 | 3 | kqtopon 21578 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘∪ 𝐽) → (KQ‘𝐽) ∈ (TopOn‘ran (𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}))) |
5 | 2, 4 | sylbi 207 | . . 3 ⊢ (𝐽 ∈ Top → (KQ‘𝐽) ∈ (TopOn‘ran (𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦}))) |
6 | topontop 20766 | . . 3 ⊢ ((KQ‘𝐽) ∈ (TopOn‘ran (𝑥 ∈ ∪ 𝐽 ↦ {𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦})) → (KQ‘𝐽) ∈ Top) | |
7 | 5, 6 | syl 17 | . 2 ⊢ (𝐽 ∈ Top → (KQ‘𝐽) ∈ Top) |
8 | 0opn 20757 | . . . 4 ⊢ ((KQ‘𝐽) ∈ Top → ∅ ∈ (KQ‘𝐽)) | |
9 | elfvdm 6258 | . . . 4 ⊢ (∅ ∈ (KQ‘𝐽) → 𝐽 ∈ dom KQ) | |
10 | 8, 9 | syl 17 | . . 3 ⊢ ((KQ‘𝐽) ∈ Top → 𝐽 ∈ dom KQ) |
11 | ovex 6718 | . . . 4 ⊢ (𝑗 qTop (𝑥 ∈ ∪ 𝑗 ↦ {𝑦 ∈ 𝑗 ∣ 𝑥 ∈ 𝑦})) ∈ V | |
12 | df-kq 21545 | . . . 4 ⊢ KQ = (𝑗 ∈ Top ↦ (𝑗 qTop (𝑥 ∈ ∪ 𝑗 ↦ {𝑦 ∈ 𝑗 ∣ 𝑥 ∈ 𝑦}))) | |
13 | 11, 12 | dmmpti 6061 | . . 3 ⊢ dom KQ = Top |
14 | 10, 13 | syl6eleq 2740 | . 2 ⊢ ((KQ‘𝐽) ∈ Top → 𝐽 ∈ Top) |
15 | 7, 14 | impbii 199 | 1 ⊢ (𝐽 ∈ Top ↔ (KQ‘𝐽) ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∈ wcel 2030 {crab 2945 ∅c0 3948 ∪ cuni 4468 ↦ cmpt 4762 dom cdm 5143 ran crn 5144 ‘cfv 5926 (class class class)co 6690 qTop cqtop 16210 Topctop 20746 TopOnctopon 20763 KQckq 21544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-qtop 16214 df-top 20747 df-topon 20764 df-kq 21545 |
This theorem is referenced by: kqt0 21597 kqreg 21602 kqnrm 21603 |
Copyright terms: Public domain | W3C validator |