MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  madufval Structured version   Visualization version   GIF version

Theorem madufval 20362
Description: First substitution for the adjunct (cofactor) matrix. (Contributed by SO, 11-Jul-2018.)
Hypotheses
Ref Expression
madufval.a 𝐴 = (𝑁 Mat 𝑅)
madufval.d 𝐷 = (𝑁 maDet 𝑅)
madufval.j 𝐽 = (𝑁 maAdju 𝑅)
madufval.b 𝐵 = (Base‘𝐴)
madufval.o 1 = (1r𝑅)
madufval.z 0 = (0g𝑅)
Assertion
Ref Expression
madufval 𝐽 = (𝑚𝐵 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙))))))
Distinct variable groups:   𝑚,𝑁,𝑖,𝑗,𝑘,𝑙   𝑅,𝑚,𝑖,𝑗,𝑘,𝑙   𝐵,𝑚
Allowed substitution hints:   𝐴(𝑖,𝑗,𝑘,𝑚,𝑙)   𝐵(𝑖,𝑗,𝑘,𝑙)   𝐷(𝑖,𝑗,𝑘,𝑚,𝑙)   1 (𝑖,𝑗,𝑘,𝑚,𝑙)   𝐽(𝑖,𝑗,𝑘,𝑚,𝑙)   0 (𝑖,𝑗,𝑘,𝑚,𝑙)

Proof of Theorem madufval
Dummy variables 𝑛 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 madufval.j . 2 𝐽 = (𝑁 maAdju 𝑅)
2 oveq1 6611 . . . . . . 7 (𝑛 = 𝑁 → (𝑛 Mat 𝑟) = (𝑁 Mat 𝑟))
32fveq2d 6152 . . . . . 6 (𝑛 = 𝑁 → (Base‘(𝑛 Mat 𝑟)) = (Base‘(𝑁 Mat 𝑟)))
4 id 22 . . . . . . 7 (𝑛 = 𝑁𝑛 = 𝑁)
5 oveq1 6611 . . . . . . . 8 (𝑛 = 𝑁 → (𝑛 maDet 𝑟) = (𝑁 maDet 𝑟))
6 eqidd 2622 . . . . . . . . 9 (𝑛 = 𝑁 → if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑟), (0g𝑟)), (𝑘𝑚𝑙)) = if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑟), (0g𝑟)), (𝑘𝑚𝑙)))
74, 4, 6mpt2eq123dv 6670 . . . . . . . 8 (𝑛 = 𝑁 → (𝑘𝑛, 𝑙𝑛 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑟), (0g𝑟)), (𝑘𝑚𝑙))) = (𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑟), (0g𝑟)), (𝑘𝑚𝑙))))
85, 7fveq12d 6154 . . . . . . 7 (𝑛 = 𝑁 → ((𝑛 maDet 𝑟)‘(𝑘𝑛, 𝑙𝑛 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑟), (0g𝑟)), (𝑘𝑚𝑙)))) = ((𝑁 maDet 𝑟)‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑟), (0g𝑟)), (𝑘𝑚𝑙)))))
94, 4, 8mpt2eq123dv 6670 . . . . . 6 (𝑛 = 𝑁 → (𝑖𝑛, 𝑗𝑛 ↦ ((𝑛 maDet 𝑟)‘(𝑘𝑛, 𝑙𝑛 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑟), (0g𝑟)), (𝑘𝑚𝑙))))) = (𝑖𝑁, 𝑗𝑁 ↦ ((𝑁 maDet 𝑟)‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑟), (0g𝑟)), (𝑘𝑚𝑙))))))
103, 9mpteq12dv 4693 . . . . 5 (𝑛 = 𝑁 → (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑖𝑛, 𝑗𝑛 ↦ ((𝑛 maDet 𝑟)‘(𝑘𝑛, 𝑙𝑛 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑟), (0g𝑟)), (𝑘𝑚𝑙)))))) = (𝑚 ∈ (Base‘(𝑁 Mat 𝑟)) ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑁 maDet 𝑟)‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑟), (0g𝑟)), (𝑘𝑚𝑙)))))))
11 oveq2 6612 . . . . . . 7 (𝑟 = 𝑅 → (𝑁 Mat 𝑟) = (𝑁 Mat 𝑅))
1211fveq2d 6152 . . . . . 6 (𝑟 = 𝑅 → (Base‘(𝑁 Mat 𝑟)) = (Base‘(𝑁 Mat 𝑅)))
13 oveq2 6612 . . . . . . . 8 (𝑟 = 𝑅 → (𝑁 maDet 𝑟) = (𝑁 maDet 𝑅))
14 fveq2 6148 . . . . . . . . . . 11 (𝑟 = 𝑅 → (1r𝑟) = (1r𝑅))
15 fveq2 6148 . . . . . . . . . . 11 (𝑟 = 𝑅 → (0g𝑟) = (0g𝑅))
1614, 15ifeq12d 4078 . . . . . . . . . 10 (𝑟 = 𝑅 → if(𝑙 = 𝑖, (1r𝑟), (0g𝑟)) = if(𝑙 = 𝑖, (1r𝑅), (0g𝑅)))
1716ifeq1d 4076 . . . . . . . . 9 (𝑟 = 𝑅 → if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑟), (0g𝑟)), (𝑘𝑚𝑙)) = if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑅), (0g𝑅)), (𝑘𝑚𝑙)))
1817mpt2eq3dv 6674 . . . . . . . 8 (𝑟 = 𝑅 → (𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑟), (0g𝑟)), (𝑘𝑚𝑙))) = (𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑅), (0g𝑅)), (𝑘𝑚𝑙))))
1913, 18fveq12d 6154 . . . . . . 7 (𝑟 = 𝑅 → ((𝑁 maDet 𝑟)‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑟), (0g𝑟)), (𝑘𝑚𝑙)))) = ((𝑁 maDet 𝑅)‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑅), (0g𝑅)), (𝑘𝑚𝑙)))))
2019mpt2eq3dv 6674 . . . . . 6 (𝑟 = 𝑅 → (𝑖𝑁, 𝑗𝑁 ↦ ((𝑁 maDet 𝑟)‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑟), (0g𝑟)), (𝑘𝑚𝑙))))) = (𝑖𝑁, 𝑗𝑁 ↦ ((𝑁 maDet 𝑅)‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑅), (0g𝑅)), (𝑘𝑚𝑙))))))
2112, 20mpteq12dv 4693 . . . . 5 (𝑟 = 𝑅 → (𝑚 ∈ (Base‘(𝑁 Mat 𝑟)) ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑁 maDet 𝑟)‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑟), (0g𝑟)), (𝑘𝑚𝑙)))))) = (𝑚 ∈ (Base‘(𝑁 Mat 𝑅)) ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑁 maDet 𝑅)‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑅), (0g𝑅)), (𝑘𝑚𝑙)))))))
22 df-madu 20359 . . . . 5 maAdju = (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑖𝑛, 𝑗𝑛 ↦ ((𝑛 maDet 𝑟)‘(𝑘𝑛, 𝑙𝑛 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑟), (0g𝑟)), (𝑘𝑚𝑙)))))))
23 fvex 6158 . . . . . 6 (Base‘(𝑁 Mat 𝑅)) ∈ V
2423mptex 6440 . . . . 5 (𝑚 ∈ (Base‘(𝑁 Mat 𝑅)) ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑁 maDet 𝑅)‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑅), (0g𝑅)), (𝑘𝑚𝑙)))))) ∈ V
2510, 21, 22, 24ovmpt2 6749 . . . 4 ((𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 maAdju 𝑅) = (𝑚 ∈ (Base‘(𝑁 Mat 𝑅)) ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑁 maDet 𝑅)‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑅), (0g𝑅)), (𝑘𝑚𝑙)))))))
26 madufval.b . . . . . 6 𝐵 = (Base‘𝐴)
27 madufval.a . . . . . . 7 𝐴 = (𝑁 Mat 𝑅)
2827fveq2i 6151 . . . . . 6 (Base‘𝐴) = (Base‘(𝑁 Mat 𝑅))
2926, 28eqtri 2643 . . . . 5 𝐵 = (Base‘(𝑁 Mat 𝑅))
30 madufval.d . . . . . . . 8 𝐷 = (𝑁 maDet 𝑅)
31 madufval.o . . . . . . . . . . . 12 1 = (1r𝑅)
3231a1i 11 . . . . . . . . . . 11 ((𝑘𝑁𝑙𝑁) → 1 = (1r𝑅))
33 madufval.z . . . . . . . . . . . 12 0 = (0g𝑅)
3433a1i 11 . . . . . . . . . . 11 ((𝑘𝑁𝑙𝑁) → 0 = (0g𝑅))
3532, 34ifeq12d 4078 . . . . . . . . . 10 ((𝑘𝑁𝑙𝑁) → if(𝑙 = 𝑖, 1 , 0 ) = if(𝑙 = 𝑖, (1r𝑅), (0g𝑅)))
3635ifeq1d 4076 . . . . . . . . 9 ((𝑘𝑁𝑙𝑁) → if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙)) = if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑅), (0g𝑅)), (𝑘𝑚𝑙)))
3736mpt2eq3ia 6673 . . . . . . . 8 (𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙))) = (𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑅), (0g𝑅)), (𝑘𝑚𝑙)))
3830, 37fveq12i 6153 . . . . . . 7 (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙)))) = ((𝑁 maDet 𝑅)‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑅), (0g𝑅)), (𝑘𝑚𝑙))))
3938a1i 11 . . . . . 6 ((𝑖𝑁𝑗𝑁) → (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙)))) = ((𝑁 maDet 𝑅)‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑅), (0g𝑅)), (𝑘𝑚𝑙)))))
4039mpt2eq3ia 6673 . . . . 5 (𝑖𝑁, 𝑗𝑁 ↦ (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙))))) = (𝑖𝑁, 𝑗𝑁 ↦ ((𝑁 maDet 𝑅)‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑅), (0g𝑅)), (𝑘𝑚𝑙)))))
4129, 40mpteq12i 4702 . . . 4 (𝑚𝐵 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙)))))) = (𝑚 ∈ (Base‘(𝑁 Mat 𝑅)) ↦ (𝑖𝑁, 𝑗𝑁 ↦ ((𝑁 maDet 𝑅)‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑅), (0g𝑅)), (𝑘𝑚𝑙))))))
4225, 41syl6eqr 2673 . . 3 ((𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 maAdju 𝑅) = (𝑚𝐵 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙)))))))
4322reldmmpt2 6724 . . . . 5 Rel dom maAdju
4443ovprc 6636 . . . 4 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 maAdju 𝑅) = ∅)
45 df-mat 20133 . . . . . . . . . . 11 Mat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ ((𝑟 freeLMod (𝑛 × 𝑛)) sSet ⟨(.r‘ndx), (𝑟 maMul ⟨𝑛, 𝑛, 𝑛⟩)⟩))
4645reldmmpt2 6724 . . . . . . . . . 10 Rel dom Mat
4746ovprc 6636 . . . . . . . . 9 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 Mat 𝑅) = ∅)
4827, 47syl5eq 2667 . . . . . . . 8 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → 𝐴 = ∅)
4948fveq2d 6152 . . . . . . 7 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (Base‘𝐴) = (Base‘∅))
50 base0 15833 . . . . . . 7 ∅ = (Base‘∅)
5149, 26, 503eqtr4g 2680 . . . . . 6 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → 𝐵 = ∅)
5251mpteq1d 4698 . . . . 5 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑚𝐵 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙)))))) = (𝑚 ∈ ∅ ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙)))))))
53 mpt0 5978 . . . . 5 (𝑚 ∈ ∅ ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙)))))) = ∅
5452, 53syl6eq 2671 . . . 4 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑚𝐵 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙)))))) = ∅)
5544, 54eqtr4d 2658 . . 3 (¬ (𝑁 ∈ V ∧ 𝑅 ∈ V) → (𝑁 maAdju 𝑅) = (𝑚𝐵 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙)))))))
5642, 55pm2.61i 176 . 2 (𝑁 maAdju 𝑅) = (𝑚𝐵 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙))))))
571, 56eqtri 2643 1 𝐽 = (𝑚𝐵 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝐷‘(𝑘𝑁, 𝑙𝑁 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, 1 , 0 ), (𝑘𝑚𝑙))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 384   = wceq 1480  wcel 1987  Vcvv 3186  c0 3891  ifcif 4058  cop 4154  cotp 4156  cmpt 4673   × cxp 5072  cfv 5847  (class class class)co 6604  cmpt2 6606  Fincfn 7899  ndxcnx 15778   sSet csts 15779  Basecbs 15781  .rcmulr 15863  0gc0g 16021  1rcur 18422   freeLMod cfrlm 20009   maMul cmmul 20108   Mat cmat 20132   maDet cmdat 20309   maAdju cmadu 20357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-slot 15785  df-base 15786  df-mat 20133  df-madu 20359
This theorem is referenced by:  maduval  20363  maduf  20366
  Copyright terms: Public domain W3C validator