MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapsnconst Structured version   Visualization version   GIF version

Theorem mapsnconst 7847
Description: Every singleton map is a constant function. (Contributed by Stefan O'Rear, 25-Mar-2015.)
Hypotheses
Ref Expression
mapsncnv.s 𝑆 = {𝑋}
mapsncnv.b 𝐵 ∈ V
mapsncnv.x 𝑋 ∈ V
Assertion
Ref Expression
mapsnconst (𝐹 ∈ (𝐵𝑚 𝑆) → 𝐹 = (𝑆 × {(𝐹𝑋)}))

Proof of Theorem mapsnconst
StepHypRef Expression
1 mapsncnv.b . . . 4 𝐵 ∈ V
2 snex 4869 . . . 4 {𝑋} ∈ V
31, 2elmap 7830 . . 3 (𝐹 ∈ (𝐵𝑚 {𝑋}) ↔ 𝐹:{𝑋}⟶𝐵)
4 mapsncnv.x . . . . . 6 𝑋 ∈ V
54fsn2 6357 . . . . 5 (𝐹:{𝑋}⟶𝐵 ↔ ((𝐹𝑋) ∈ 𝐵𝐹 = {⟨𝑋, (𝐹𝑋)⟩}))
65simprbi 480 . . . 4 (𝐹:{𝑋}⟶𝐵𝐹 = {⟨𝑋, (𝐹𝑋)⟩})
7 mapsncnv.s . . . . . 6 𝑆 = {𝑋}
87xpeq1i 5095 . . . . 5 (𝑆 × {(𝐹𝑋)}) = ({𝑋} × {(𝐹𝑋)})
9 fvex 6158 . . . . . 6 (𝐹𝑋) ∈ V
104, 9xpsn 6361 . . . . 5 ({𝑋} × {(𝐹𝑋)}) = {⟨𝑋, (𝐹𝑋)⟩}
118, 10eqtr2i 2644 . . . 4 {⟨𝑋, (𝐹𝑋)⟩} = (𝑆 × {(𝐹𝑋)})
126, 11syl6eq 2671 . . 3 (𝐹:{𝑋}⟶𝐵𝐹 = (𝑆 × {(𝐹𝑋)}))
133, 12sylbi 207 . 2 (𝐹 ∈ (𝐵𝑚 {𝑋}) → 𝐹 = (𝑆 × {(𝐹𝑋)}))
147oveq2i 6615 . 2 (𝐵𝑚 𝑆) = (𝐵𝑚 {𝑋})
1513, 14eleq2s 2716 1 (𝐹 ∈ (𝐵𝑚 𝑆) → 𝐹 = (𝑆 × {(𝐹𝑋)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1480  wcel 1987  Vcvv 3186  {csn 4148  cop 4154   × cxp 5072  wf 5843  cfv 5847  (class class class)co 6604  𝑚 cmap 7802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-map 7804
This theorem is referenced by:  mapsncnv  7848  fvcoe1  19496  coe1mul2lem1  19556  coe1mul2  19558
  Copyright terms: Public domain W3C validator