MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhpfval Structured version   Visualization version   GIF version

Theorem mhpfval 20332
Description: Value of the "homogeneous polynomial" function. (Contributed by Steven Nguyen, 25-Aug-2023.)
Hypotheses
Ref Expression
mhpfval.h 𝐻 = (𝐼 mHomP 𝑅)
mhpfval.p 𝑃 = (𝐼 mPoly 𝑅)
mhpfval.b 𝐵 = (Base‘𝑃)
mhpfval.0 0 = (0g𝑅)
mhpfval.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
mhpfval.i (𝜑𝐼𝑉)
mhpfval.r (𝜑𝑅𝑊)
Assertion
Ref Expression
mhpfval (𝜑𝐻 = (𝑛 ∈ ℕ0 ↦ {𝑓𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ Σ𝑗 ∈ ℕ0 (𝑔𝑗) = 𝑛}}))
Distinct variable groups:   𝑓,𝑔,,𝑗,𝑛   𝑓,𝐼,,𝑛   𝑅,𝑓,𝑛   𝐷,𝑔   𝐵,𝑓
Allowed substitution hints:   𝜑(𝑓,𝑔,,𝑗,𝑛)   𝐵(𝑔,,𝑗,𝑛)   𝐷(𝑓,,𝑗,𝑛)   𝑃(𝑓,𝑔,,𝑗,𝑛)   𝑅(𝑔,,𝑗)   𝐻(𝑓,𝑔,,𝑗,𝑛)   𝐼(𝑔,𝑗)   𝑉(𝑓,𝑔,,𝑗,𝑛)   𝑊(𝑓,𝑔,,𝑗,𝑛)   0 (𝑓,𝑔,,𝑗,𝑛)

Proof of Theorem mhpfval
Dummy variables 𝑖 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhpfval.h . 2 𝐻 = (𝐼 mHomP 𝑅)
2 mhpfval.i . . . 4 (𝜑𝐼𝑉)
32elexd 3514 . . 3 (𝜑𝐼 ∈ V)
4 mhpfval.r . . . 4 (𝜑𝑅𝑊)
54elexd 3514 . . 3 (𝜑𝑅 ∈ V)
6 nn0ex 11904 . . . . 5 0 ∈ V
76mptex 6986 . . . 4 (𝑛 ∈ ℕ0 ↦ {𝑓𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ Σ𝑗 ∈ ℕ0 (𝑔𝑗) = 𝑛}}) ∈ V
87a1i 11 . . 3 (𝜑 → (𝑛 ∈ ℕ0 ↦ {𝑓𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ Σ𝑗 ∈ ℕ0 (𝑔𝑗) = 𝑛}}) ∈ V)
9 oveq12 7165 . . . . . . . . 9 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑖 mPoly 𝑟) = (𝐼 mPoly 𝑅))
10 mhpfval.p . . . . . . . . 9 𝑃 = (𝐼 mPoly 𝑅)
119, 10syl6eqr 2874 . . . . . . . 8 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑖 mPoly 𝑟) = 𝑃)
1211fveq2d 6674 . . . . . . 7 ((𝑖 = 𝐼𝑟 = 𝑅) → (Base‘(𝑖 mPoly 𝑟)) = (Base‘𝑃))
13 mhpfval.b . . . . . . 7 𝐵 = (Base‘𝑃)
1412, 13syl6eqr 2874 . . . . . 6 ((𝑖 = 𝐼𝑟 = 𝑅) → (Base‘(𝑖 mPoly 𝑟)) = 𝐵)
15 fveq2 6670 . . . . . . . . . 10 (𝑟 = 𝑅 → (0g𝑟) = (0g𝑅))
16 mhpfval.0 . . . . . . . . . 10 0 = (0g𝑅)
1715, 16syl6eqr 2874 . . . . . . . . 9 (𝑟 = 𝑅 → (0g𝑟) = 0 )
1817oveq2d 7172 . . . . . . . 8 (𝑟 = 𝑅 → (𝑓 supp (0g𝑟)) = (𝑓 supp 0 ))
1918adantl 484 . . . . . . 7 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑓 supp (0g𝑟)) = (𝑓 supp 0 ))
20 oveq2 7164 . . . . . . . . . . 11 (𝑖 = 𝐼 → (ℕ0m 𝑖) = (ℕ0m 𝐼))
2120rabeqdv 3484 . . . . . . . . . 10 (𝑖 = 𝐼 → { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin})
22 mhpfval.d . . . . . . . . . 10 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
2321, 22syl6eqr 2874 . . . . . . . . 9 (𝑖 = 𝐼 → { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} = 𝐷)
2423rabeqdv 3484 . . . . . . . 8 (𝑖 = 𝐼 → {𝑔 ∈ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ∣ Σ𝑗 ∈ ℕ0 (𝑔𝑗) = 𝑛} = {𝑔𝐷 ∣ Σ𝑗 ∈ ℕ0 (𝑔𝑗) = 𝑛})
2524adantr 483 . . . . . . 7 ((𝑖 = 𝐼𝑟 = 𝑅) → {𝑔 ∈ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ∣ Σ𝑗 ∈ ℕ0 (𝑔𝑗) = 𝑛} = {𝑔𝐷 ∣ Σ𝑗 ∈ ℕ0 (𝑔𝑗) = 𝑛})
2619, 25sseq12d 4000 . . . . . 6 ((𝑖 = 𝐼𝑟 = 𝑅) → ((𝑓 supp (0g𝑟)) ⊆ {𝑔 ∈ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ∣ Σ𝑗 ∈ ℕ0 (𝑔𝑗) = 𝑛} ↔ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ Σ𝑗 ∈ ℕ0 (𝑔𝑗) = 𝑛}))
2714, 26rabeqbidv 3485 . . . . 5 ((𝑖 = 𝐼𝑟 = 𝑅) → {𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ∣ (𝑓 supp (0g𝑟)) ⊆ {𝑔 ∈ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ∣ Σ𝑗 ∈ ℕ0 (𝑔𝑗) = 𝑛}} = {𝑓𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ Σ𝑗 ∈ ℕ0 (𝑔𝑗) = 𝑛}})
2827mpteq2dv 5162 . . . 4 ((𝑖 = 𝐼𝑟 = 𝑅) → (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ∣ (𝑓 supp (0g𝑟)) ⊆ {𝑔 ∈ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ∣ Σ𝑗 ∈ ℕ0 (𝑔𝑗) = 𝑛}}) = (𝑛 ∈ ℕ0 ↦ {𝑓𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ Σ𝑗 ∈ ℕ0 (𝑔𝑗) = 𝑛}}))
29 df-mhp 20326 . . . 4 mHomP = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ∣ (𝑓 supp (0g𝑟)) ⊆ {𝑔 ∈ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ∣ Σ𝑗 ∈ ℕ0 (𝑔𝑗) = 𝑛}}))
3028, 29ovmpoga 7304 . . 3 ((𝐼 ∈ V ∧ 𝑅 ∈ V ∧ (𝑛 ∈ ℕ0 ↦ {𝑓𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ Σ𝑗 ∈ ℕ0 (𝑔𝑗) = 𝑛}}) ∈ V) → (𝐼 mHomP 𝑅) = (𝑛 ∈ ℕ0 ↦ {𝑓𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ Σ𝑗 ∈ ℕ0 (𝑔𝑗) = 𝑛}}))
313, 5, 8, 30syl3anc 1367 . 2 (𝜑 → (𝐼 mHomP 𝑅) = (𝑛 ∈ ℕ0 ↦ {𝑓𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ Σ𝑗 ∈ ℕ0 (𝑔𝑗) = 𝑛}}))
321, 31syl5eq 2868 1 (𝜑𝐻 = (𝑛 ∈ ℕ0 ↦ {𝑓𝐵 ∣ (𝑓 supp 0 ) ⊆ {𝑔𝐷 ∣ Σ𝑗 ∈ ℕ0 (𝑔𝑗) = 𝑛}}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  {crab 3142  Vcvv 3494  wss 3936  cmpt 5146  ccnv 5554  cima 5558  cfv 6355  (class class class)co 7156   supp csupp 7830  m cmap 8406  Fincfn 8509  cn 11638  0cn0 11898  Σcsu 15042  Basecbs 16483  0gc0g 16713   mPoly cmpl 20133   mHomP cmhp 20322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-1cn 10595  ax-addcl 10597
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-nn 11639  df-n0 11899  df-mhp 20326
This theorem is referenced by:  mhpval  20333
  Copyright terms: Public domain W3C validator