MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrcval Structured version   Visualization version   GIF version

Theorem mrcval 16881
Description: Evaluation of the Moore closure of a set. (Contributed by Stefan O'Rear, 31-Jan-2015.) (Proof shortened by Fan Zheng, 6-Jun-2016.)
Hypothesis
Ref Expression
mrcfval.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
mrcval ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → (𝐹𝑈) = {𝑠𝐶𝑈𝑠})
Distinct variable groups:   𝐹,𝑠   𝐶,𝑠   𝑋,𝑠   𝑈,𝑠

Proof of Theorem mrcval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mrcfval.f . . . 4 𝐹 = (mrCls‘𝐶)
21mrcfval 16879 . . 3 (𝐶 ∈ (Moore‘𝑋) → 𝐹 = (𝑥 ∈ 𝒫 𝑋 {𝑠𝐶𝑥𝑠}))
32adantr 483 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → 𝐹 = (𝑥 ∈ 𝒫 𝑋 {𝑠𝐶𝑥𝑠}))
4 sseq1 3992 . . . . 5 (𝑥 = 𝑈 → (𝑥𝑠𝑈𝑠))
54rabbidv 3480 . . . 4 (𝑥 = 𝑈 → {𝑠𝐶𝑥𝑠} = {𝑠𝐶𝑈𝑠})
65inteqd 4881 . . 3 (𝑥 = 𝑈 {𝑠𝐶𝑥𝑠} = {𝑠𝐶𝑈𝑠})
76adantl 484 . 2 (((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) ∧ 𝑥 = 𝑈) → {𝑠𝐶𝑥𝑠} = {𝑠𝐶𝑈𝑠})
8 mre1cl 16865 . . . 4 (𝐶 ∈ (Moore‘𝑋) → 𝑋𝐶)
9 elpw2g 5247 . . . 4 (𝑋𝐶 → (𝑈 ∈ 𝒫 𝑋𝑈𝑋))
108, 9syl 17 . . 3 (𝐶 ∈ (Moore‘𝑋) → (𝑈 ∈ 𝒫 𝑋𝑈𝑋))
1110biimpar 480 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → 𝑈 ∈ 𝒫 𝑋)
12 sseq2 3993 . . . . 5 (𝑠 = 𝑋 → (𝑈𝑠𝑈𝑋))
138adantr 483 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → 𝑋𝐶)
14 simpr 487 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → 𝑈𝑋)
1512, 13, 14elrabd 3682 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → 𝑋 ∈ {𝑠𝐶𝑈𝑠})
1615ne0d 4301 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → {𝑠𝐶𝑈𝑠} ≠ ∅)
17 intex 5240 . . 3 ({𝑠𝐶𝑈𝑠} ≠ ∅ ↔ {𝑠𝐶𝑈𝑠} ∈ V)
1816, 17sylib 220 . 2 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → {𝑠𝐶𝑈𝑠} ∈ V)
193, 7, 11, 18fvmptd 6775 1 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑈𝑋) → (𝐹𝑈) = {𝑠𝐶𝑈𝑠})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3016  {crab 3142  Vcvv 3494  wss 3936  c0 4291  𝒫 cpw 4539   cint 4876  cmpt 5146  cfv 6355  Moorecmre 16853  mrClscmrc 16854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-int 4877  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-fv 6363  df-mre 16857  df-mrc 16858
This theorem is referenced by:  mrcid  16884  mrcss  16887  mrcssid  16888  cycsubg2  18353  aspval2  20127
  Copyright terms: Public domain W3C validator