MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmfval2 Structured version   Visualization version   GIF version

Theorem nmfval2 23195
Description: The value of the norm function using a restricted metric. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
nmfval.n 𝑁 = (norm‘𝑊)
nmfval.x 𝑋 = (Base‘𝑊)
nmfval.z 0 = (0g𝑊)
nmfval.d 𝐷 = (dist‘𝑊)
nmfval.e 𝐸 = (𝐷 ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
nmfval2 (𝑊 ∈ Grp → 𝑁 = (𝑥𝑋 ↦ (𝑥𝐸 0 )))
Distinct variable groups:   𝑥,𝐷   𝑥,𝑊   𝑥,𝑋   𝑥, 0
Allowed substitution hints:   𝐸(𝑥)   𝑁(𝑥)

Proof of Theorem nmfval2
StepHypRef Expression
1 nmfval.n . . 3 𝑁 = (norm‘𝑊)
2 nmfval.x . . 3 𝑋 = (Base‘𝑊)
3 nmfval.z . . 3 0 = (0g𝑊)
4 nmfval.d . . 3 𝐷 = (dist‘𝑊)
51, 2, 3, 4nmfval 23193 . 2 𝑁 = (𝑥𝑋 ↦ (𝑥𝐷 0 ))
6 nmfval.e . . . . 5 𝐸 = (𝐷 ↾ (𝑋 × 𝑋))
76oveqi 7162 . . . 4 (𝑥𝐸 0 ) = (𝑥(𝐷 ↾ (𝑋 × 𝑋)) 0 )
8 id 22 . . . . 5 (𝑥𝑋𝑥𝑋)
92, 3grpidcl 18126 . . . . 5 (𝑊 ∈ Grp → 0𝑋)
10 ovres 7307 . . . . 5 ((𝑥𝑋0𝑋) → (𝑥(𝐷 ↾ (𝑋 × 𝑋)) 0 ) = (𝑥𝐷 0 ))
118, 9, 10syl2anr 598 . . . 4 ((𝑊 ∈ Grp ∧ 𝑥𝑋) → (𝑥(𝐷 ↾ (𝑋 × 𝑋)) 0 ) = (𝑥𝐷 0 ))
127, 11syl5req 2868 . . 3 ((𝑊 ∈ Grp ∧ 𝑥𝑋) → (𝑥𝐷 0 ) = (𝑥𝐸 0 ))
1312mpteq2dva 5154 . 2 (𝑊 ∈ Grp → (𝑥𝑋 ↦ (𝑥𝐷 0 )) = (𝑥𝑋 ↦ (𝑥𝐸 0 )))
145, 13syl5eq 2867 1 (𝑊 ∈ Grp → 𝑁 = (𝑥𝑋 ↦ (𝑥𝐸 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wcel 2113  cmpt 5139   × cxp 5546  cres 5550  cfv 6348  (class class class)co 7149  Basecbs 16478  distcds 16569  0gc0g 16708  Grpcgrp 18098  normcnm 23181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3493  df-sbc 3769  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-fv 6356  df-riota 7107  df-ov 7152  df-0g 16710  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-grp 18101  df-nm 23187
This theorem is referenced by:  nmf2  23197  nmpropd2  23199
  Copyright terms: Public domain W3C validator