MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oacomf1olem Structured version   Visualization version   GIF version

Theorem oacomf1olem 8190
Description: Lemma for oacomf1o 8191. (Contributed by Mario Carneiro, 30-May-2015.)
Hypothesis
Ref Expression
oacomf1olem.1 𝐹 = (𝑥𝐴 ↦ (𝐵 +o 𝑥))
Assertion
Ref Expression
oacomf1olem ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐹:𝐴1-1-onto→ran 𝐹 ∧ (ran 𝐹𝐵) = ∅))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem oacomf1olem
StepHypRef Expression
1 oaf1o 8189 . . . . . . 7 (𝐵 ∈ On → (𝑥 ∈ On ↦ (𝐵 +o 𝑥)):On–1-1-onto→(On ∖ 𝐵))
21adantl 484 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑥 ∈ On ↦ (𝐵 +o 𝑥)):On–1-1-onto→(On ∖ 𝐵))
3 f1of1 6614 . . . . . 6 ((𝑥 ∈ On ↦ (𝐵 +o 𝑥)):On–1-1-onto→(On ∖ 𝐵) → (𝑥 ∈ On ↦ (𝐵 +o 𝑥)):On–1-1→(On ∖ 𝐵))
42, 3syl 17 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑥 ∈ On ↦ (𝐵 +o 𝑥)):On–1-1→(On ∖ 𝐵))
5 onss 7505 . . . . . 6 (𝐴 ∈ On → 𝐴 ⊆ On)
65adantr 483 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ⊆ On)
7 f1ssres 6582 . . . . 5 (((𝑥 ∈ On ↦ (𝐵 +o 𝑥)):On–1-1→(On ∖ 𝐵) ∧ 𝐴 ⊆ On) → ((𝑥 ∈ On ↦ (𝐵 +o 𝑥)) ↾ 𝐴):𝐴1-1→(On ∖ 𝐵))
84, 6, 7syl2anc 586 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑥 ∈ On ↦ (𝐵 +o 𝑥)) ↾ 𝐴):𝐴1-1→(On ∖ 𝐵))
96resmptd 5908 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑥 ∈ On ↦ (𝐵 +o 𝑥)) ↾ 𝐴) = (𝑥𝐴 ↦ (𝐵 +o 𝑥)))
10 oacomf1olem.1 . . . . . 6 𝐹 = (𝑥𝐴 ↦ (𝐵 +o 𝑥))
119, 10syl6eqr 2874 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝑥 ∈ On ↦ (𝐵 +o 𝑥)) ↾ 𝐴) = 𝐹)
12 f1eq1 6570 . . . . 5 (((𝑥 ∈ On ↦ (𝐵 +o 𝑥)) ↾ 𝐴) = 𝐹 → (((𝑥 ∈ On ↦ (𝐵 +o 𝑥)) ↾ 𝐴):𝐴1-1→(On ∖ 𝐵) ↔ 𝐹:𝐴1-1→(On ∖ 𝐵)))
1311, 12syl 17 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (((𝑥 ∈ On ↦ (𝐵 +o 𝑥)) ↾ 𝐴):𝐴1-1→(On ∖ 𝐵) ↔ 𝐹:𝐴1-1→(On ∖ 𝐵)))
148, 13mpbid 234 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐹:𝐴1-1→(On ∖ 𝐵))
15 f1f1orn 6626 . . 3 (𝐹:𝐴1-1→(On ∖ 𝐵) → 𝐹:𝐴1-1-onto→ran 𝐹)
1614, 15syl 17 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐹:𝐴1-1-onto→ran 𝐹)
17 f1f 6575 . . . 4 (𝐹:𝐴1-1→(On ∖ 𝐵) → 𝐹:𝐴⟶(On ∖ 𝐵))
18 frn 6520 . . . 4 (𝐹:𝐴⟶(On ∖ 𝐵) → ran 𝐹 ⊆ (On ∖ 𝐵))
1914, 17, 183syl 18 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ran 𝐹 ⊆ (On ∖ 𝐵))
2019difss2d 4111 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ran 𝐹 ⊆ On)
21 reldisj 4402 . . . 4 (ran 𝐹 ⊆ On → ((ran 𝐹𝐵) = ∅ ↔ ran 𝐹 ⊆ (On ∖ 𝐵)))
2220, 21syl 17 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((ran 𝐹𝐵) = ∅ ↔ ran 𝐹 ⊆ (On ∖ 𝐵)))
2319, 22mpbird 259 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (ran 𝐹𝐵) = ∅)
2416, 23jca 514 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐹:𝐴1-1-onto→ran 𝐹 ∧ (ran 𝐹𝐵) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  cdif 3933  cin 3935  wss 3936  c0 4291  cmpt 5146  ran crn 5556  cres 5557  Oncon0 6191  wf 6351  1-1wf1 6352  1-1-ontowf1o 6354  (class class class)co 7156   +o coa 8099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-oadd 8106
This theorem is referenced by:  oacomf1o  8191  onadju  9619
  Copyright terms: Public domain W3C validator