MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omv Structured version   Visualization version   GIF version

Theorem omv 8137
Description: Value of ordinal multiplication. (Contributed by NM, 17-Sep-1995.) (Revised by Mario Carneiro, 23-Aug-2014.)
Assertion
Ref Expression
omv ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝐵))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem omv
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7164 . . . . 5 (𝑦 = 𝐴 → (𝑥 +o 𝑦) = (𝑥 +o 𝐴))
21mpteq2dv 5162 . . . 4 (𝑦 = 𝐴 → (𝑥 ∈ V ↦ (𝑥 +o 𝑦)) = (𝑥 ∈ V ↦ (𝑥 +o 𝐴)))
3 rdgeq1 8047 . . . 4 ((𝑥 ∈ V ↦ (𝑥 +o 𝑦)) = (𝑥 ∈ V ↦ (𝑥 +o 𝐴)) → rec((𝑥 ∈ V ↦ (𝑥 +o 𝑦)), ∅) = rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅))
42, 3syl 17 . . 3 (𝑦 = 𝐴 → rec((𝑥 ∈ V ↦ (𝑥 +o 𝑦)), ∅) = rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅))
54fveq1d 6672 . 2 (𝑦 = 𝐴 → (rec((𝑥 ∈ V ↦ (𝑥 +o 𝑦)), ∅)‘𝑧) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝑧))
6 fveq2 6670 . 2 (𝑧 = 𝐵 → (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝑧) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝐵))
7 df-omul 8107 . 2 ·o = (𝑦 ∈ On, 𝑧 ∈ On ↦ (rec((𝑥 ∈ V ↦ (𝑥 +o 𝑦)), ∅)‘𝑧))
8 fvex 6683 . 2 (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝐵) ∈ V
95, 6, 7, 8ovmpo 7310 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) = (rec((𝑥 ∈ V ↦ (𝑥 +o 𝐴)), ∅)‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  Vcvv 3494  c0 4291  cmpt 5146  Oncon0 6191  cfv 6355  (class class class)co 7156  reccrdg 8045   +o coa 8099   ·o comu 8100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-iota 6314  df-fun 6357  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-omul 8107
This theorem is referenced by:  om0  8142  omsuc  8151  onmsuc  8154  omlim  8158
  Copyright terms: Public domain W3C validator