MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oteq3 Structured version   Visualization version   GIF version

Theorem oteq3 4381
Description: Equality theorem for ordered triples. (Contributed by NM, 3-Apr-2015.)
Assertion
Ref Expression
oteq3 (𝐴 = 𝐵 → ⟨𝐶, 𝐷, 𝐴⟩ = ⟨𝐶, 𝐷, 𝐵⟩)

Proof of Theorem oteq3
StepHypRef Expression
1 opeq2 4371 . 2 (𝐴 = 𝐵 → ⟨⟨𝐶, 𝐷⟩, 𝐴⟩ = ⟨⟨𝐶, 𝐷⟩, 𝐵⟩)
2 df-ot 4157 . 2 𝐶, 𝐷, 𝐴⟩ = ⟨⟨𝐶, 𝐷⟩, 𝐴
3 df-ot 4157 . 2 𝐶, 𝐷, 𝐵⟩ = ⟨⟨𝐶, 𝐷⟩, 𝐵
41, 2, 33eqtr4g 2680 1 (𝐴 = 𝐵 → ⟨𝐶, 𝐷, 𝐴⟩ = ⟨𝐶, 𝐷, 𝐵⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1480  cop 4154  cotp 4156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-rab 2916  df-v 3188  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-sn 4149  df-pr 4151  df-op 4155  df-ot 4157
This theorem is referenced by:  oteq3d  4384  otsndisj  4939  otiunsndisj  4940  efgi0  18054  efgi1  18055  mapdhcl  36496  mapdh6dN  36508  mapdh8  36558  mapdh9a  36559  mapdh9aOLDN  36560  hdmap1l6d  36583  hdmapval  36600  hdmapval2  36604  hdmapval3N  36610  otiunsndisjX  40595
  Copyright terms: Public domain W3C validator