MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovmptss Structured version   Visualization version   GIF version

Theorem ovmptss 7774
Description: If all the values of the mapping are subsets of a class 𝑋, then so is any evaluation of the mapping. (Contributed by Mario Carneiro, 24-Dec-2016.)
Hypothesis
Ref Expression
ovmptss.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
ovmptss (∀𝑥𝐴𝑦𝐵 𝐶𝑋 → (𝐸𝐹𝐺) ⊆ 𝑋)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem ovmptss
Dummy variables 𝑣 𝑢 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovmptss.1 . . . 4 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
2 mpomptsx 7748 . . . 4 (𝑥𝐴, 𝑦𝐵𝐶) = (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ↦ (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶)
31, 2eqtri 2844 . . 3 𝐹 = (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ↦ (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶)
43fvmptss 6766 . 2 (∀𝑧 𝑥𝐴 ({𝑥} × 𝐵)(1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶𝑋 → (𝐹‘⟨𝐸, 𝐺⟩) ⊆ 𝑋)
5 vex 3489 . . . . . . . 8 𝑢 ∈ V
6 vex 3489 . . . . . . . 8 𝑣 ∈ V
75, 6op1std 7685 . . . . . . 7 (𝑧 = ⟨𝑢, 𝑣⟩ → (1st𝑧) = 𝑢)
87csbeq1d 3875 . . . . . 6 (𝑧 = ⟨𝑢, 𝑣⟩ → (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶 = 𝑢 / 𝑥(2nd𝑧) / 𝑦𝐶)
95, 6op2ndd 7686 . . . . . . . 8 (𝑧 = ⟨𝑢, 𝑣⟩ → (2nd𝑧) = 𝑣)
109csbeq1d 3875 . . . . . . 7 (𝑧 = ⟨𝑢, 𝑣⟩ → (2nd𝑧) / 𝑦𝐶 = 𝑣 / 𝑦𝐶)
1110csbeq2dv 3878 . . . . . 6 (𝑧 = ⟨𝑢, 𝑣⟩ → 𝑢 / 𝑥(2nd𝑧) / 𝑦𝐶 = 𝑢 / 𝑥𝑣 / 𝑦𝐶)
128, 11eqtrd 2856 . . . . 5 (𝑧 = ⟨𝑢, 𝑣⟩ → (1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶 = 𝑢 / 𝑥𝑣 / 𝑦𝐶)
1312sseq1d 3986 . . . 4 (𝑧 = ⟨𝑢, 𝑣⟩ → ((1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶𝑋𝑢 / 𝑥𝑣 / 𝑦𝐶𝑋))
1413raliunxp 5696 . . 3 (∀𝑧 𝑢𝐴 ({𝑢} × 𝑢 / 𝑥𝐵)(1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶𝑋 ↔ ∀𝑢𝐴𝑣 𝑢 / 𝑥𝐵𝑢 / 𝑥𝑣 / 𝑦𝐶𝑋)
15 nfcv 2977 . . . . 5 𝑢({𝑥} × 𝐵)
16 nfcv 2977 . . . . . 6 𝑥{𝑢}
17 nfcsb1v 3895 . . . . . 6 𝑥𝑢 / 𝑥𝐵
1816, 17nfxp 5574 . . . . 5 𝑥({𝑢} × 𝑢 / 𝑥𝐵)
19 sneq 4563 . . . . . 6 (𝑥 = 𝑢 → {𝑥} = {𝑢})
20 csbeq1a 3885 . . . . . 6 (𝑥 = 𝑢𝐵 = 𝑢 / 𝑥𝐵)
2119, 20xpeq12d 5572 . . . . 5 (𝑥 = 𝑢 → ({𝑥} × 𝐵) = ({𝑢} × 𝑢 / 𝑥𝐵))
2215, 18, 21cbviun 4947 . . . 4 𝑥𝐴 ({𝑥} × 𝐵) = 𝑢𝐴 ({𝑢} × 𝑢 / 𝑥𝐵)
2322raleqi 3409 . . 3 (∀𝑧 𝑥𝐴 ({𝑥} × 𝐵)(1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶𝑋 ↔ ∀𝑧 𝑢𝐴 ({𝑢} × 𝑢 / 𝑥𝐵)(1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶𝑋)
24 nfv 1915 . . . 4 𝑢𝑦𝐵 𝐶𝑋
25 nfcsb1v 3895 . . . . . 6 𝑥𝑢 / 𝑥𝑣 / 𝑦𝐶
26 nfcv 2977 . . . . . 6 𝑥𝑋
2725, 26nfss 3948 . . . . 5 𝑥𝑢 / 𝑥𝑣 / 𝑦𝐶𝑋
2817, 27nfralw 3225 . . . 4 𝑥𝑣 𝑢 / 𝑥𝐵𝑢 / 𝑥𝑣 / 𝑦𝐶𝑋
29 nfv 1915 . . . . . 6 𝑣 𝐶𝑋
30 nfcsb1v 3895 . . . . . . 7 𝑦𝑣 / 𝑦𝐶
31 nfcv 2977 . . . . . . 7 𝑦𝑋
3230, 31nfss 3948 . . . . . 6 𝑦𝑣 / 𝑦𝐶𝑋
33 csbeq1a 3885 . . . . . . 7 (𝑦 = 𝑣𝐶 = 𝑣 / 𝑦𝐶)
3433sseq1d 3986 . . . . . 6 (𝑦 = 𝑣 → (𝐶𝑋𝑣 / 𝑦𝐶𝑋))
3529, 32, 34cbvralw 3433 . . . . 5 (∀𝑦𝐵 𝐶𝑋 ↔ ∀𝑣𝐵 𝑣 / 𝑦𝐶𝑋)
36 csbeq1a 3885 . . . . . . 7 (𝑥 = 𝑢𝑣 / 𝑦𝐶 = 𝑢 / 𝑥𝑣 / 𝑦𝐶)
3736sseq1d 3986 . . . . . 6 (𝑥 = 𝑢 → (𝑣 / 𝑦𝐶𝑋𝑢 / 𝑥𝑣 / 𝑦𝐶𝑋))
3820, 37raleqbidv 3401 . . . . 5 (𝑥 = 𝑢 → (∀𝑣𝐵 𝑣 / 𝑦𝐶𝑋 ↔ ∀𝑣 𝑢 / 𝑥𝐵𝑢 / 𝑥𝑣 / 𝑦𝐶𝑋))
3935, 38syl5bb 285 . . . 4 (𝑥 = 𝑢 → (∀𝑦𝐵 𝐶𝑋 ↔ ∀𝑣 𝑢 / 𝑥𝐵𝑢 / 𝑥𝑣 / 𝑦𝐶𝑋))
4024, 28, 39cbvralw 3433 . . 3 (∀𝑥𝐴𝑦𝐵 𝐶𝑋 ↔ ∀𝑢𝐴𝑣 𝑢 / 𝑥𝐵𝑢 / 𝑥𝑣 / 𝑦𝐶𝑋)
4114, 23, 403bitr4ri 306 . 2 (∀𝑥𝐴𝑦𝐵 𝐶𝑋 ↔ ∀𝑧 𝑥𝐴 ({𝑥} × 𝐵)(1st𝑧) / 𝑥(2nd𝑧) / 𝑦𝐶𝑋)
42 df-ov 7145 . . 3 (𝐸𝐹𝐺) = (𝐹‘⟨𝐸, 𝐺⟩)
4342sseq1i 3983 . 2 ((𝐸𝐹𝐺) ⊆ 𝑋 ↔ (𝐹‘⟨𝐸, 𝐺⟩) ⊆ 𝑋)
444, 41, 433imtr4i 294 1 (∀𝑥𝐴𝑦𝐵 𝐶𝑋 → (𝐸𝐹𝐺) ⊆ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wral 3138  csb 3871  wss 3924  {csn 4553  cop 4559   ciun 4905  cmpt 5132   × cxp 5539  cfv 6341  (class class class)co 7142  cmpo 7144  1st c1st 7673  2nd c2nd 7674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5189  ax-nul 5196  ax-pow 5252  ax-pr 5316  ax-un 7447
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3488  df-sbc 3764  df-csb 3872  df-dif 3927  df-un 3929  df-in 3931  df-ss 3940  df-nul 4280  df-if 4454  df-sn 4554  df-pr 4556  df-op 4560  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5446  df-xp 5547  df-rel 5548  df-cnv 5549  df-co 5550  df-dm 5551  df-rn 5552  df-res 5553  df-ima 5554  df-iota 6300  df-fun 6343  df-fv 6349  df-ov 7145  df-oprab 7146  df-mpo 7147  df-1st 7675  df-2nd 7676
This theorem is referenced by:  relmpoopab  7775  relxpchom  17414  reldv  24453
  Copyright terms: Public domain W3C validator