Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddss2 Structured version   Visualization version   GIF version

Theorem paddss2 33922
Description: Subset law for projective subspace sum. (unss2 3742 analog.) (Contributed by NM, 7-Mar-2012.)
Hypotheses
Ref Expression
padd0.a 𝐴 = (Atoms‘𝐾)
padd0.p + = (+𝑃𝐾)
Assertion
Ref Expression
paddss2 ((𝐾𝐵𝑌𝐴𝑍𝐴) → (𝑋𝑌 → (𝑍 + 𝑋) ⊆ (𝑍 + 𝑌)))

Proof of Theorem paddss2
Dummy variables 𝑞 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 3558 . . . . . . 7 (𝑋𝑌 → (𝑝𝑋𝑝𝑌))
21orim2d 880 . . . . . 6 (𝑋𝑌 → ((𝑝𝑍𝑝𝑋) → (𝑝𝑍𝑝𝑌)))
3 ssrexv 3626 . . . . . . . 8 (𝑋𝑌 → (∃𝑟𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟) → ∃𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)))
43reximdv 2995 . . . . . . 7 (𝑋𝑌 → (∃𝑞𝑍𝑟𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟) → ∃𝑞𝑍𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)))
54anim2d 586 . . . . . 6 (𝑋𝑌 → ((𝑝𝐴 ∧ ∃𝑞𝑍𝑟𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)) → (𝑝𝐴 ∧ ∃𝑞𝑍𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟))))
62, 5orim12d 878 . . . . 5 (𝑋𝑌 → (((𝑝𝑍𝑝𝑋) ∨ (𝑝𝐴 ∧ ∃𝑞𝑍𝑟𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟))) → ((𝑝𝑍𝑝𝑌) ∨ (𝑝𝐴 ∧ ∃𝑞𝑍𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)))))
76adantl 480 . . . 4 (((𝐾𝐵𝑌𝐴𝑍𝐴) ∧ 𝑋𝑌) → (((𝑝𝑍𝑝𝑋) ∨ (𝑝𝐴 ∧ ∃𝑞𝑍𝑟𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟))) → ((𝑝𝑍𝑝𝑌) ∨ (𝑝𝐴 ∧ ∃𝑞𝑍𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)))))
8 simpl1 1056 . . . . 5 (((𝐾𝐵𝑌𝐴𝑍𝐴) ∧ 𝑋𝑌) → 𝐾𝐵)
9 simpl3 1058 . . . . 5 (((𝐾𝐵𝑌𝐴𝑍𝐴) ∧ 𝑋𝑌) → 𝑍𝐴)
10 sstr 3572 . . . . . . 7 ((𝑋𝑌𝑌𝐴) → 𝑋𝐴)
11103ad2antr2 1219 . . . . . 6 ((𝑋𝑌 ∧ (𝐾𝐵𝑌𝐴𝑍𝐴)) → 𝑋𝐴)
1211ancoms 467 . . . . 5 (((𝐾𝐵𝑌𝐴𝑍𝐴) ∧ 𝑋𝑌) → 𝑋𝐴)
13 eqid 2606 . . . . . 6 (le‘𝐾) = (le‘𝐾)
14 eqid 2606 . . . . . 6 (join‘𝐾) = (join‘𝐾)
15 padd0.a . . . . . 6 𝐴 = (Atoms‘𝐾)
16 padd0.p . . . . . 6 + = (+𝑃𝐾)
1713, 14, 15, 16elpadd 33903 . . . . 5 ((𝐾𝐵𝑍𝐴𝑋𝐴) → (𝑝 ∈ (𝑍 + 𝑋) ↔ ((𝑝𝑍𝑝𝑋) ∨ (𝑝𝐴 ∧ ∃𝑞𝑍𝑟𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)))))
188, 9, 12, 17syl3anc 1317 . . . 4 (((𝐾𝐵𝑌𝐴𝑍𝐴) ∧ 𝑋𝑌) → (𝑝 ∈ (𝑍 + 𝑋) ↔ ((𝑝𝑍𝑝𝑋) ∨ (𝑝𝐴 ∧ ∃𝑞𝑍𝑟𝑋 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)))))
19 simpl2 1057 . . . . 5 (((𝐾𝐵𝑌𝐴𝑍𝐴) ∧ 𝑋𝑌) → 𝑌𝐴)
2013, 14, 15, 16elpadd 33903 . . . . 5 ((𝐾𝐵𝑍𝐴𝑌𝐴) → (𝑝 ∈ (𝑍 + 𝑌) ↔ ((𝑝𝑍𝑝𝑌) ∨ (𝑝𝐴 ∧ ∃𝑞𝑍𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)))))
218, 9, 19, 20syl3anc 1317 . . . 4 (((𝐾𝐵𝑌𝐴𝑍𝐴) ∧ 𝑋𝑌) → (𝑝 ∈ (𝑍 + 𝑌) ↔ ((𝑝𝑍𝑝𝑌) ∨ (𝑝𝐴 ∧ ∃𝑞𝑍𝑟𝑌 𝑝(le‘𝐾)(𝑞(join‘𝐾)𝑟)))))
227, 18, 213imtr4d 281 . . 3 (((𝐾𝐵𝑌𝐴𝑍𝐴) ∧ 𝑋𝑌) → (𝑝 ∈ (𝑍 + 𝑋) → 𝑝 ∈ (𝑍 + 𝑌)))
2322ssrdv 3570 . 2 (((𝐾𝐵𝑌𝐴𝑍𝐴) ∧ 𝑋𝑌) → (𝑍 + 𝑋) ⊆ (𝑍 + 𝑌))
2423ex 448 1 ((𝐾𝐵𝑌𝐴𝑍𝐴) → (𝑋𝑌 → (𝑍 + 𝑋) ⊆ (𝑍 + 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wo 381  wa 382  w3a 1030   = wceq 1474  wcel 1976  wrex 2893  wss 3536   class class class wbr 4574  cfv 5787  (class class class)co 6524  lecple 15718  joincjn 16710  Atomscatm 33368  +𝑃cpadd 33899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586  ax-rep 4690  ax-sep 4700  ax-nul 4709  ax-pow 4761  ax-pr 4825  ax-un 6821
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2458  df-mo 2459  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-ne 2778  df-ral 2897  df-rex 2898  df-reu 2899  df-rab 2901  df-v 3171  df-sbc 3399  df-csb 3496  df-dif 3539  df-un 3541  df-in 3543  df-ss 3550  df-nul 3871  df-if 4033  df-pw 4106  df-sn 4122  df-pr 4124  df-op 4128  df-uni 4364  df-iun 4448  df-br 4575  df-opab 4635  df-mpt 4636  df-id 4940  df-xp 5031  df-rel 5032  df-cnv 5033  df-co 5034  df-dm 5035  df-rn 5036  df-res 5037  df-ima 5038  df-iota 5751  df-fun 5789  df-fn 5790  df-f 5791  df-f1 5792  df-fo 5793  df-f1o 5794  df-fv 5795  df-ov 6527  df-oprab 6528  df-mpt2 6529  df-1st 7033  df-2nd 7034  df-padd 33900
This theorem is referenced by:  paddss12  33923  pmod1i  33952
  Copyright terms: Public domain W3C validator