Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rdgellim Structured version   Visualization version   GIF version

Theorem rdgellim 34681
Description: Elementhood in a recursive definition at a limit ordinal. (Contributed by ML, 30-Mar-2022.)
Assertion
Ref Expression
rdgellim (((𝐵 ∈ On ∧ Lim 𝐵) ∧ 𝐶𝐵) → (𝑋 ∈ (rec(𝐹, 𝐴)‘𝐶) → 𝑋 ∈ (rec(𝐹, 𝐴)‘𝐵)))

Proof of Theorem rdgellim
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6663 . . . . . . 7 (𝑦 = 𝐶 → (rec(𝐹, 𝐴)‘𝑦) = (rec(𝐹, 𝐴)‘𝐶))
21eleq2d 2897 . . . . . 6 (𝑦 = 𝐶 → (𝑋 ∈ (rec(𝐹, 𝐴)‘𝑦) ↔ 𝑋 ∈ (rec(𝐹, 𝐴)‘𝐶)))
32rspcev 3620 . . . . 5 ((𝐶𝐵𝑋 ∈ (rec(𝐹, 𝐴)‘𝐶)) → ∃𝑦𝐵 𝑋 ∈ (rec(𝐹, 𝐴)‘𝑦))
43ex 415 . . . 4 (𝐶𝐵 → (𝑋 ∈ (rec(𝐹, 𝐴)‘𝐶) → ∃𝑦𝐵 𝑋 ∈ (rec(𝐹, 𝐴)‘𝑦)))
5 eliun 4916 . . . 4 (𝑋 𝑦𝐵 (rec(𝐹, 𝐴)‘𝑦) ↔ ∃𝑦𝐵 𝑋 ∈ (rec(𝐹, 𝐴)‘𝑦))
64, 5syl6ibr 254 . . 3 (𝐶𝐵 → (𝑋 ∈ (rec(𝐹, 𝐴)‘𝐶) → 𝑋 𝑦𝐵 (rec(𝐹, 𝐴)‘𝑦)))
76adantl 484 . 2 (((𝐵 ∈ On ∧ Lim 𝐵) ∧ 𝐶𝐵) → (𝑋 ∈ (rec(𝐹, 𝐴)‘𝐶) → 𝑋 𝑦𝐵 (rec(𝐹, 𝐴)‘𝑦)))
8 rdglim2a 8062 . . . 4 ((𝐵 ∈ On ∧ Lim 𝐵) → (rec(𝐹, 𝐴)‘𝐵) = 𝑦𝐵 (rec(𝐹, 𝐴)‘𝑦))
98eleq2d 2897 . . 3 ((𝐵 ∈ On ∧ Lim 𝐵) → (𝑋 ∈ (rec(𝐹, 𝐴)‘𝐵) ↔ 𝑋 𝑦𝐵 (rec(𝐹, 𝐴)‘𝑦)))
109adantr 483 . 2 (((𝐵 ∈ On ∧ Lim 𝐵) ∧ 𝐶𝐵) → (𝑋 ∈ (rec(𝐹, 𝐴)‘𝐵) ↔ 𝑋 𝑦𝐵 (rec(𝐹, 𝐴)‘𝑦)))
117, 10sylibrd 261 1 (((𝐵 ∈ On ∧ Lim 𝐵) ∧ 𝐶𝐵) → (𝑋 ∈ (rec(𝐹, 𝐴)‘𝐶) → 𝑋 ∈ (rec(𝐹, 𝐴)‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  wrex 3138   ciun 4912  Oncon0 6184  Lim wlim 6185  cfv 6348  reccrdg 8038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-ral 3142  df-rex 3143  df-reu 3144  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-wrecs 7940  df-recs 8001  df-rdg 8039
This theorem is referenced by:  rdglimss  34682  exrecfnlem  34684
  Copyright terms: Public domain W3C validator