Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relexp0eq Structured version   Visualization version   GIF version

Theorem relexp0eq 37509
Description: The zeroth power of relationships is the same if and only if the union of their domain and ranges is the same. (Contributed by RP, 11-Jun-2020.)
Assertion
Ref Expression
relexp0eq ((𝐴𝑈𝐵𝑉) → ((dom 𝐴 ∪ ran 𝐴) = (dom 𝐵 ∪ ran 𝐵) ↔ (𝐴𝑟0) = (𝐵𝑟0)))

Proof of Theorem relexp0eq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relexp0g 13704 . . 3 (𝐴𝑈 → (𝐴𝑟0) = ( I ↾ (dom 𝐴 ∪ ran 𝐴)))
2 relexp0g 13704 . . 3 (𝐵𝑉 → (𝐵𝑟0) = ( I ↾ (dom 𝐵 ∪ ran 𝐵)))
31, 2eqeqan12d 2637 . 2 ((𝐴𝑈𝐵𝑉) → ((𝐴𝑟0) = (𝐵𝑟0) ↔ ( I ↾ (dom 𝐴 ∪ ran 𝐴)) = ( I ↾ (dom 𝐵 ∪ ran 𝐵))))
4 dfcleq 2615 . . . 4 ((dom 𝐴 ∪ ran 𝐴) = (dom 𝐵 ∪ ran 𝐵) ↔ ∀𝑥(𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵)))
5 alcom 2034 . . . . 5 (∀𝑦𝑥(𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵)) ↔ ∀𝑥𝑦(𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵)))
6 19.3v 1894 . . . . 5 (∀𝑦𝑥(𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵)) ↔ ∀𝑥(𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵)))
7 ax6ev 1887 . . . . . . . . 9 𝑦 𝑦 = 𝑥
8 pm5.5 351 . . . . . . . . 9 (∃𝑦 𝑦 = 𝑥 → ((∃𝑦 𝑦 = 𝑥 → (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵))) ↔ (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵))))
97, 8ax-mp 5 . . . . . . . 8 ((∃𝑦 𝑦 = 𝑥 → (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵))) ↔ (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵)))
10 19.23v 1899 . . . . . . . 8 (∀𝑦(𝑦 = 𝑥 → (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵))) ↔ (∃𝑦 𝑦 = 𝑥 → (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵))))
11 19.3v 1894 . . . . . . . 8 (∀𝑦(𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵)) ↔ (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵)))
129, 10, 113bitr4ri 293 . . . . . . 7 (∀𝑦(𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵)) ↔ ∀𝑦(𝑦 = 𝑥 → (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵))))
13 pm5.32 667 . . . . . . . . 9 ((𝑦 = 𝑥 → (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵))) ↔ ((𝑦 = 𝑥𝑥 ∈ (dom 𝐴 ∪ ran 𝐴)) ↔ (𝑦 = 𝑥𝑥 ∈ (dom 𝐵 ∪ ran 𝐵))))
14 ancom 466 . . . . . . . . . 10 ((𝑦 = 𝑥𝑥 ∈ (dom 𝐴 ∪ ran 𝐴)) ↔ (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ∧ 𝑦 = 𝑥))
15 ancom 466 . . . . . . . . . 10 ((𝑦 = 𝑥𝑥 ∈ (dom 𝐵 ∪ ran 𝐵)) ↔ (𝑥 ∈ (dom 𝐵 ∪ ran 𝐵) ∧ 𝑦 = 𝑥))
1614, 15bibi12i 329 . . . . . . . . 9 (((𝑦 = 𝑥𝑥 ∈ (dom 𝐴 ∪ ran 𝐴)) ↔ (𝑦 = 𝑥𝑥 ∈ (dom 𝐵 ∪ ran 𝐵))) ↔ ((𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ∧ 𝑦 = 𝑥) ↔ (𝑥 ∈ (dom 𝐵 ∪ ran 𝐵) ∧ 𝑦 = 𝑥)))
1713, 16bitri 264 . . . . . . . 8 ((𝑦 = 𝑥 → (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵))) ↔ ((𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ∧ 𝑦 = 𝑥) ↔ (𝑥 ∈ (dom 𝐵 ∪ ran 𝐵) ∧ 𝑦 = 𝑥)))
1817albii 1744 . . . . . . 7 (∀𝑦(𝑦 = 𝑥 → (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵))) ↔ ∀𝑦((𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ∧ 𝑦 = 𝑥) ↔ (𝑥 ∈ (dom 𝐵 ∪ ran 𝐵) ∧ 𝑦 = 𝑥)))
1912, 18bitri 264 . . . . . 6 (∀𝑦(𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵)) ↔ ∀𝑦((𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ∧ 𝑦 = 𝑥) ↔ (𝑥 ∈ (dom 𝐵 ∪ ran 𝐵) ∧ 𝑦 = 𝑥)))
2019albii 1744 . . . . 5 (∀𝑥𝑦(𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵)) ↔ ∀𝑥𝑦((𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ∧ 𝑦 = 𝑥) ↔ (𝑥 ∈ (dom 𝐵 ∪ ran 𝐵) ∧ 𝑦 = 𝑥)))
215, 6, 203bitr3i 290 . . . 4 (∀𝑥(𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ↔ 𝑥 ∈ (dom 𝐵 ∪ ran 𝐵)) ↔ ∀𝑥𝑦((𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ∧ 𝑦 = 𝑥) ↔ (𝑥 ∈ (dom 𝐵 ∪ ran 𝐵) ∧ 𝑦 = 𝑥)))
224, 21bitri 264 . . 3 ((dom 𝐴 ∪ ran 𝐴) = (dom 𝐵 ∪ ran 𝐵) ↔ ∀𝑥𝑦((𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ∧ 𝑦 = 𝑥) ↔ (𝑥 ∈ (dom 𝐵 ∪ ran 𝐵) ∧ 𝑦 = 𝑥)))
23 eqopab2b 4970 . . 3 ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ∧ 𝑦 = 𝑥)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (dom 𝐵 ∪ ran 𝐵) ∧ 𝑦 = 𝑥)} ↔ ∀𝑥𝑦((𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ∧ 𝑦 = 𝑥) ↔ (𝑥 ∈ (dom 𝐵 ∪ ran 𝐵) ∧ 𝑦 = 𝑥)))
24 opabresid 5419 . . . 4 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ∧ 𝑦 = 𝑥)} = ( I ↾ (dom 𝐴 ∪ ran 𝐴))
25 opabresid 5419 . . . 4 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (dom 𝐵 ∪ ran 𝐵) ∧ 𝑦 = 𝑥)} = ( I ↾ (dom 𝐵 ∪ ran 𝐵))
2624, 25eqeq12i 2635 . . 3 ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (dom 𝐴 ∪ ran 𝐴) ∧ 𝑦 = 𝑥)} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (dom 𝐵 ∪ ran 𝐵) ∧ 𝑦 = 𝑥)} ↔ ( I ↾ (dom 𝐴 ∪ ran 𝐴)) = ( I ↾ (dom 𝐵 ∪ ran 𝐵)))
2722, 23, 263bitr2i 288 . 2 ((dom 𝐴 ∪ ran 𝐴) = (dom 𝐵 ∪ ran 𝐵) ↔ ( I ↾ (dom 𝐴 ∪ ran 𝐴)) = ( I ↾ (dom 𝐵 ∪ ran 𝐵)))
283, 27syl6rbbr 279 1 ((𝐴𝑈𝐵𝑉) → ((dom 𝐴 ∪ ran 𝐴) = (dom 𝐵 ∪ ran 𝐵) ↔ (𝐴𝑟0) = (𝐵𝑟0)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wal 1478   = wceq 1480  wex 1701  wcel 1987  cun 3557  {copab 4677   I cid 4989  dom cdm 5079  ran crn 5080  cres 5081  (class class class)co 6610  0cc0 9888  𝑟crelexp 13702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-mulcl 9950  ax-i2m1 9956
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3191  df-sbc 3422  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-iota 5815  df-fun 5854  df-fv 5860  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-n0 11245  df-relexp 13703
This theorem is referenced by:  iunrelexp0  37510
  Copyright terms: Public domain W3C validator