Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ov2ssiunov2 Structured version   Visualization version   GIF version

Theorem ov2ssiunov2 37811
Description: Any particular operator value is the subset of the index union over a set of operator values. Generalized from rtrclreclem1 13779 and rtrclreclem2 . (Contributed by RP, 4-Jun-2020.)
Hypothesis
Ref Expression
ov2ssiunov2.def 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))
Assertion
Ref Expression
ov2ssiunov2 ((𝑅𝑈𝑁𝑉𝑀𝑁) → (𝑅 𝑀) ⊆ (𝐶𝑅))
Distinct variable groups:   𝑛,𝑟,𝐶,𝑁,   𝑛,𝑀   𝑅,𝑟,𝑛   𝑈,𝑛   𝑛,𝑉
Allowed substitution hints:   𝑈(𝑟)   𝑀(𝑟)   𝑉(𝑟)

Proof of Theorem ov2ssiunov2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp3 1061 . . . 4 ((𝑅𝑈𝑁𝑉𝑀𝑁) → 𝑀𝑁)
2 simpr 477 . . . . . 6 (((𝑅𝑈𝑁𝑉𝑀𝑁) ∧ 𝑛 = 𝑀) → 𝑛 = 𝑀)
32oveq2d 6651 . . . . 5 (((𝑅𝑈𝑁𝑉𝑀𝑁) ∧ 𝑛 = 𝑀) → (𝑅 𝑛) = (𝑅 𝑀))
43eleq2d 2685 . . . 4 (((𝑅𝑈𝑁𝑉𝑀𝑁) ∧ 𝑛 = 𝑀) → (𝑥 ∈ (𝑅 𝑛) ↔ 𝑥 ∈ (𝑅 𝑀)))
51, 4rspcedv 3308 . . 3 ((𝑅𝑈𝑁𝑉𝑀𝑁) → (𝑥 ∈ (𝑅 𝑀) → ∃𝑛𝑁 𝑥 ∈ (𝑅 𝑛)))
6 ov2ssiunov2.def . . . . . 6 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))
76eliunov2 37790 . . . . 5 ((𝑅𝑈𝑁𝑉) → (𝑥 ∈ (𝐶𝑅) ↔ ∃𝑛𝑁 𝑥 ∈ (𝑅 𝑛)))
87biimprd 238 . . . 4 ((𝑅𝑈𝑁𝑉) → (∃𝑛𝑁 𝑥 ∈ (𝑅 𝑛) → 𝑥 ∈ (𝐶𝑅)))
983adant3 1079 . . 3 ((𝑅𝑈𝑁𝑉𝑀𝑁) → (∃𝑛𝑁 𝑥 ∈ (𝑅 𝑛) → 𝑥 ∈ (𝐶𝑅)))
105, 9syld 47 . 2 ((𝑅𝑈𝑁𝑉𝑀𝑁) → (𝑥 ∈ (𝑅 𝑀) → 𝑥 ∈ (𝐶𝑅)))
1110ssrdv 3601 1 ((𝑅𝑈𝑁𝑉𝑀𝑁) → (𝑅 𝑀) ⊆ (𝐶𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1481  wcel 1988  wrex 2910  Vcvv 3195  wss 3567   ciun 4511  cmpt 4720  cfv 5876  (class class class)co 6635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pr 4897  ax-un 6934
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-reu 2916  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-id 5014  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-ov 6638
This theorem is referenced by:  dftrcl3  37831  dfrtrcl3  37844
  Copyright terms: Public domain W3C validator