Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunrelexp0 Structured version   Visualization version   GIF version

Theorem iunrelexp0 37472
Description: Simplification of zeroth power of indexed union of powers of relations. (Contributed by RP, 19-Jun-2020.)
Assertion
Ref Expression
iunrelexp0 ((𝑅𝑉𝑍 ⊆ ℕ0 ∧ ({0, 1} ∩ 𝑍) ≠ ∅) → ( 𝑥𝑍 (𝑅𝑟𝑥)↑𝑟0) = (𝑅𝑟0))
Distinct variable groups:   𝑥,𝑅   𝑥,𝑉   𝑥,𝑍

Proof of Theorem iunrelexp0
StepHypRef Expression
1 df-pr 4151 . . . . . . 7 {0, 1} = ({0} ∪ {1})
21ineq1i 3788 . . . . . 6 ({0, 1} ∩ 𝑍) = (({0} ∪ {1}) ∩ 𝑍)
3 indir 3851 . . . . . 6 (({0} ∪ {1}) ∩ 𝑍) = (({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍))
42, 3eqtr2i 2644 . . . . 5 (({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) = ({0, 1} ∩ 𝑍)
54uneq1i 3741 . . . 4 ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍) = (({0, 1} ∩ 𝑍) ∪ 𝑍)
6 inss2 3812 . . . . 5 ({0, 1} ∩ 𝑍) ⊆ 𝑍
7 ssequn1 3761 . . . . 5 (({0, 1} ∩ 𝑍) ⊆ 𝑍 ↔ (({0, 1} ∩ 𝑍) ∪ 𝑍) = 𝑍)
86, 7mpbi 220 . . . 4 (({0, 1} ∩ 𝑍) ∪ 𝑍) = 𝑍
95, 8eqtr2i 2644 . . 3 𝑍 = ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)
10 iuneq1 4500 . . . 4 (𝑍 = ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍) → 𝑥𝑍 (𝑅𝑟𝑥) = 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅𝑟𝑥))
1110oveq1d 6619 . . 3 (𝑍 = ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍) → ( 𝑥𝑍 (𝑅𝑟𝑥)↑𝑟0) = ( 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅𝑟𝑥)↑𝑟0))
129, 11ax-mp 5 . 2 ( 𝑥𝑍 (𝑅𝑟𝑥)↑𝑟0) = ( 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅𝑟𝑥)↑𝑟0)
13 dmiun 5293 . . . . . . 7 dom 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅𝑟𝑥) = 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)dom (𝑅𝑟𝑥)
14 iunxun 4571 . . . . . . 7 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)dom (𝑅𝑟𝑥) = ( 𝑥 ∈ (({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍))dom (𝑅𝑟𝑥) ∪ 𝑥𝑍 dom (𝑅𝑟𝑥))
15 iunxun 4571 . . . . . . . . . 10 𝑥 ∈ (({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍))dom (𝑅𝑟𝑥) = ( 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥))
1615equncomi 3737 . . . . . . . . 9 𝑥 ∈ (({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍))dom (𝑅𝑟𝑥) = ( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥))
1716uneq1i 3741 . . . . . . . 8 ( 𝑥 ∈ (({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍))dom (𝑅𝑟𝑥) ∪ 𝑥𝑍 dom (𝑅𝑟𝑥)) = (( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥)) ∪ 𝑥𝑍 dom (𝑅𝑟𝑥))
1817equncomi 3737 . . . . . . 7 ( 𝑥 ∈ (({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍))dom (𝑅𝑟𝑥) ∪ 𝑥𝑍 dom (𝑅𝑟𝑥)) = ( 𝑥𝑍 dom (𝑅𝑟𝑥) ∪ ( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥)))
1913, 14, 183eqtri 2647 . . . . . 6 dom 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅𝑟𝑥) = ( 𝑥𝑍 dom (𝑅𝑟𝑥) ∪ ( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥)))
20 rniun 5502 . . . . . . 7 ran 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅𝑟𝑥) = 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)ran (𝑅𝑟𝑥)
21 iunxun 4571 . . . . . . 7 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)ran (𝑅𝑟𝑥) = ( 𝑥 ∈ (({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍))ran (𝑅𝑟𝑥) ∪ 𝑥𝑍 ran (𝑅𝑟𝑥))
22 iunxun 4571 . . . . . . . 8 𝑥 ∈ (({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍))ran (𝑅𝑟𝑥) = ( 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥))
2322uneq1i 3741 . . . . . . 7 ( 𝑥 ∈ (({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍))ran (𝑅𝑟𝑥) ∪ 𝑥𝑍 ran (𝑅𝑟𝑥)) = (( 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥)) ∪ 𝑥𝑍 ran (𝑅𝑟𝑥))
2420, 21, 233eqtri 2647 . . . . . 6 ran 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅𝑟𝑥) = (( 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥)) ∪ 𝑥𝑍 ran (𝑅𝑟𝑥))
2519, 24uneq12i 3743 . . . . 5 (dom 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅𝑟𝑥) ∪ ran 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅𝑟𝑥)) = (( 𝑥𝑍 dom (𝑅𝑟𝑥) ∪ ( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥))) ∪ (( 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥)) ∪ 𝑥𝑍 ran (𝑅𝑟𝑥)))
26 uncom 3735 . . . . . . 7 ( 𝑥𝑍 dom (𝑅𝑟𝑥) ∪ ( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥))) = (( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥)) ∪ 𝑥𝑍 dom (𝑅𝑟𝑥))
2726uneq1i 3741 . . . . . 6 (( 𝑥𝑍 dom (𝑅𝑟𝑥) ∪ ( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥))) ∪ (( 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥)) ∪ 𝑥𝑍 ran (𝑅𝑟𝑥))) = ((( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥)) ∪ 𝑥𝑍 dom (𝑅𝑟𝑥)) ∪ (( 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥)) ∪ 𝑥𝑍 ran (𝑅𝑟𝑥)))
28 un4 3751 . . . . . 6 ((( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥)) ∪ 𝑥𝑍 dom (𝑅𝑟𝑥)) ∪ (( 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥)) ∪ 𝑥𝑍 ran (𝑅𝑟𝑥))) = ((( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥)) ∪ ( 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥))) ∪ ( 𝑥𝑍 dom (𝑅𝑟𝑥) ∪ 𝑥𝑍 ran (𝑅𝑟𝑥)))
2927, 28eqtri 2643 . . . . 5 (( 𝑥𝑍 dom (𝑅𝑟𝑥) ∪ ( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥))) ∪ (( 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥)) ∪ 𝑥𝑍 ran (𝑅𝑟𝑥))) = ((( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥)) ∪ ( 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥))) ∪ ( 𝑥𝑍 dom (𝑅𝑟𝑥) ∪ 𝑥𝑍 ran (𝑅𝑟𝑥)))
30 uncom 3735 . . . . . . . 8 ( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥)) = ( 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥))
3130uneq1i 3741 . . . . . . 7 (( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥)) ∪ ( 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥))) = (( 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥)) ∪ ( 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥)))
32 un4 3751 . . . . . . 7 (( 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥)) ∪ ( 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥))) = (( 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥)) ∪ ( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥)))
3331, 32eqtri 2643 . . . . . 6 (( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥)) ∪ ( 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥))) = (( 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥)) ∪ ( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥)))
3433uneq1i 3741 . . . . 5 ((( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥)) ∪ ( 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥))) ∪ ( 𝑥𝑍 dom (𝑅𝑟𝑥) ∪ 𝑥𝑍 ran (𝑅𝑟𝑥))) = ((( 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥)) ∪ ( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥))) ∪ ( 𝑥𝑍 dom (𝑅𝑟𝑥) ∪ 𝑥𝑍 ran (𝑅𝑟𝑥)))
3525, 29, 343eqtri 2647 . . . 4 (dom 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅𝑟𝑥) ∪ ran 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅𝑟𝑥)) = ((( 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥)) ∪ ( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥))) ∪ ( 𝑥𝑍 dom (𝑅𝑟𝑥) ∪ 𝑥𝑍 ran (𝑅𝑟𝑥)))
36 df-ne 2791 . . . . . . . . . 10 (({0, 1} ∩ 𝑍) ≠ ∅ ↔ ¬ ({0, 1} ∩ 𝑍) = ∅)
37 incom 3783 . . . . . . . . . . . . . . 15 ({0, 1} ∩ 𝑍) = (𝑍 ∩ {0, 1})
381ineq2i 3789 . . . . . . . . . . . . . . 15 (𝑍 ∩ {0, 1}) = (𝑍 ∩ ({0} ∪ {1}))
39 indi 3849 . . . . . . . . . . . . . . 15 (𝑍 ∩ ({0} ∪ {1})) = ((𝑍 ∩ {0}) ∪ (𝑍 ∩ {1}))
4037, 38, 393eqtri 2647 . . . . . . . . . . . . . 14 ({0, 1} ∩ 𝑍) = ((𝑍 ∩ {0}) ∪ (𝑍 ∩ {1}))
4140eqeq1i 2626 . . . . . . . . . . . . 13 (({0, 1} ∩ 𝑍) = ∅ ↔ ((𝑍 ∩ {0}) ∪ (𝑍 ∩ {1})) = ∅)
42 un00 3983 . . . . . . . . . . . . 13 (((𝑍 ∩ {0}) = ∅ ∧ (𝑍 ∩ {1}) = ∅) ↔ ((𝑍 ∩ {0}) ∪ (𝑍 ∩ {1})) = ∅)
43 anor 510 . . . . . . . . . . . . 13 (((𝑍 ∩ {0}) = ∅ ∧ (𝑍 ∩ {1}) = ∅) ↔ ¬ (¬ (𝑍 ∩ {0}) = ∅ ∨ ¬ (𝑍 ∩ {1}) = ∅))
4441, 42, 433bitr2i 288 . . . . . . . . . . . 12 (({0, 1} ∩ 𝑍) = ∅ ↔ ¬ (¬ (𝑍 ∩ {0}) = ∅ ∨ ¬ (𝑍 ∩ {1}) = ∅))
4544notbii 310 . . . . . . . . . . 11 (¬ ({0, 1} ∩ 𝑍) = ∅ ↔ ¬ ¬ (¬ (𝑍 ∩ {0}) = ∅ ∨ ¬ (𝑍 ∩ {1}) = ∅))
46 notnotb 304 . . . . . . . . . . 11 ((¬ (𝑍 ∩ {0}) = ∅ ∨ ¬ (𝑍 ∩ {1}) = ∅) ↔ ¬ ¬ (¬ (𝑍 ∩ {0}) = ∅ ∨ ¬ (𝑍 ∩ {1}) = ∅))
47 disjsn 4216 . . . . . . . . . . . . . 14 ((𝑍 ∩ {0}) = ∅ ↔ ¬ 0 ∈ 𝑍)
4847notbii 310 . . . . . . . . . . . . 13 (¬ (𝑍 ∩ {0}) = ∅ ↔ ¬ ¬ 0 ∈ 𝑍)
49 notnotb 304 . . . . . . . . . . . . 13 (0 ∈ 𝑍 ↔ ¬ ¬ 0 ∈ 𝑍)
5048, 49bitr4i 267 . . . . . . . . . . . 12 (¬ (𝑍 ∩ {0}) = ∅ ↔ 0 ∈ 𝑍)
51 disjsn 4216 . . . . . . . . . . . . . 14 ((𝑍 ∩ {1}) = ∅ ↔ ¬ 1 ∈ 𝑍)
5251notbii 310 . . . . . . . . . . . . 13 (¬ (𝑍 ∩ {1}) = ∅ ↔ ¬ ¬ 1 ∈ 𝑍)
53 notnotb 304 . . . . . . . . . . . . 13 (1 ∈ 𝑍 ↔ ¬ ¬ 1 ∈ 𝑍)
5452, 53bitr4i 267 . . . . . . . . . . . 12 (¬ (𝑍 ∩ {1}) = ∅ ↔ 1 ∈ 𝑍)
5550, 54orbi12i 543 . . . . . . . . . . 11 ((¬ (𝑍 ∩ {0}) = ∅ ∨ ¬ (𝑍 ∩ {1}) = ∅) ↔ (0 ∈ 𝑍 ∨ 1 ∈ 𝑍))
5645, 46, 553bitr2i 288 . . . . . . . . . 10 (¬ ({0, 1} ∩ 𝑍) = ∅ ↔ (0 ∈ 𝑍 ∨ 1 ∈ 𝑍))
5736, 56sylbb 209 . . . . . . . . 9 (({0, 1} ∩ 𝑍) ≠ ∅ → (0 ∈ 𝑍 ∨ 1 ∈ 𝑍))
58 simpl 473 . . . . . . . . . . . . . . . . . . . 20 ((0 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → 0 ∈ 𝑍)
5958snssd 4309 . . . . . . . . . . . . . . . . . . 19 ((0 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → {0} ⊆ 𝑍)
60 df-ss 3569 . . . . . . . . . . . . . . . . . . 19 ({0} ⊆ 𝑍 ↔ ({0} ∩ 𝑍) = {0})
6159, 60sylib 208 . . . . . . . . . . . . . . . . . 18 ((0 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → ({0} ∩ 𝑍) = {0})
6261iuneq1d 4511 . . . . . . . . . . . . . . . . 17 ((0 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥) = 𝑥 ∈ {0}dom (𝑅𝑟𝑥))
63 c0ex 9978 . . . . . . . . . . . . . . . . . 18 0 ∈ V
64 oveq2 6612 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 0 → (𝑅𝑟𝑥) = (𝑅𝑟0))
6564dmeqd 5286 . . . . . . . . . . . . . . . . . 18 (𝑥 = 0 → dom (𝑅𝑟𝑥) = dom (𝑅𝑟0))
6663, 65iunxsn 4569 . . . . . . . . . . . . . . . . 17 𝑥 ∈ {0}dom (𝑅𝑟𝑥) = dom (𝑅𝑟0)
6762, 66syl6eq 2671 . . . . . . . . . . . . . . . 16 ((0 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥) = dom (𝑅𝑟0))
68 relexp0g 13696 . . . . . . . . . . . . . . . . . . 19 (𝑅𝑉 → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
6968ad2antll 764 . . . . . . . . . . . . . . . . . 18 ((0 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
7069dmeqd 5286 . . . . . . . . . . . . . . . . 17 ((0 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → dom (𝑅𝑟0) = dom ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
71 dmresi 5416 . . . . . . . . . . . . . . . . 17 dom ( I ↾ (dom 𝑅 ∪ ran 𝑅)) = (dom 𝑅 ∪ ran 𝑅)
7270, 71syl6eq 2671 . . . . . . . . . . . . . . . 16 ((0 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → dom (𝑅𝑟0) = (dom 𝑅 ∪ ran 𝑅))
7367, 72eqtrd 2655 . . . . . . . . . . . . . . 15 ((0 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥) = (dom 𝑅 ∪ ran 𝑅))
7461iuneq1d 4511 . . . . . . . . . . . . . . . . 17 ((0 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥) = 𝑥 ∈ {0}ran (𝑅𝑟𝑥))
7564rneqd 5313 . . . . . . . . . . . . . . . . . 18 (𝑥 = 0 → ran (𝑅𝑟𝑥) = ran (𝑅𝑟0))
7663, 75iunxsn 4569 . . . . . . . . . . . . . . . . 17 𝑥 ∈ {0}ran (𝑅𝑟𝑥) = ran (𝑅𝑟0)
7774, 76syl6eq 2671 . . . . . . . . . . . . . . . 16 ((0 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥) = ran (𝑅𝑟0))
7869rneqd 5313 . . . . . . . . . . . . . . . . 17 ((0 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → ran (𝑅𝑟0) = ran ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
79 rnresi 5438 . . . . . . . . . . . . . . . . 17 ran ( I ↾ (dom 𝑅 ∪ ran 𝑅)) = (dom 𝑅 ∪ ran 𝑅)
8078, 79syl6eq 2671 . . . . . . . . . . . . . . . 16 ((0 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → ran (𝑅𝑟0) = (dom 𝑅 ∪ ran 𝑅))
8177, 80eqtrd 2655 . . . . . . . . . . . . . . 15 ((0 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥) = (dom 𝑅 ∪ ran 𝑅))
8273, 81uneq12d 3746 . . . . . . . . . . . . . 14 ((0 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → ( 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥)) = ((dom 𝑅 ∪ ran 𝑅) ∪ (dom 𝑅 ∪ ran 𝑅)))
83 unidm 3734 . . . . . . . . . . . . . 14 ((dom 𝑅 ∪ ran 𝑅) ∪ (dom 𝑅 ∪ ran 𝑅)) = (dom 𝑅 ∪ ran 𝑅)
8482, 83syl6eq 2671 . . . . . . . . . . . . 13 ((0 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → ( 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥)) = (dom 𝑅 ∪ ran 𝑅))
8584uneq1d 3744 . . . . . . . . . . . 12 ((0 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → (( 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥)) ∪ ( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥))) = ((dom 𝑅 ∪ ran 𝑅) ∪ ( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥))))
86 relexpdmg 13716 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℕ0𝑅𝑉) → dom (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))
8786expcom 451 . . . . . . . . . . . . . . . . . 18 (𝑅𝑉 → (𝑥 ∈ ℕ0 → dom (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅)))
8887ralrimiv 2959 . . . . . . . . . . . . . . . . 17 (𝑅𝑉 → ∀𝑥 ∈ ℕ0 dom (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))
8988ad2antll 764 . . . . . . . . . . . . . . . 16 ((0 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → ∀𝑥 ∈ ℕ0 dom (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))
90 olc 399 . . . . . . . . . . . . . . . . . . . . 21 (𝑍 ⊆ ℕ0 → ({1} ⊆ ℕ0𝑍 ⊆ ℕ0))
9190ad2antrl 763 . . . . . . . . . . . . . . . . . . . 20 ((0 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → ({1} ⊆ ℕ0𝑍 ⊆ ℕ0))
92 inss 3820 . . . . . . . . . . . . . . . . . . . 20 (({1} ⊆ ℕ0𝑍 ⊆ ℕ0) → ({1} ∩ 𝑍) ⊆ ℕ0)
9391, 92syl 17 . . . . . . . . . . . . . . . . . . 19 ((0 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → ({1} ∩ 𝑍) ⊆ ℕ0)
9493sseld 3582 . . . . . . . . . . . . . . . . . 18 ((0 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → (𝑥 ∈ ({1} ∩ 𝑍) → 𝑥 ∈ ℕ0))
9594imim1d 82 . . . . . . . . . . . . . . . . 17 ((0 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → ((𝑥 ∈ ℕ0 → dom (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅)) → (𝑥 ∈ ({1} ∩ 𝑍) → dom (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))))
9695ralimdv2 2955 . . . . . . . . . . . . . . . 16 ((0 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → (∀𝑥 ∈ ℕ0 dom (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅) → ∀𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅)))
9789, 96mpd 15 . . . . . . . . . . . . . . 15 ((0 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → ∀𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))
98 iunss 4527 . . . . . . . . . . . . . . 15 ( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅) ↔ ∀𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))
9997, 98sylibr 224 . . . . . . . . . . . . . 14 ((0 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))
100 relexprng 13720 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℕ0𝑅𝑉) → ran (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))
101100expcom 451 . . . . . . . . . . . . . . . . . 18 (𝑅𝑉 → (𝑥 ∈ ℕ0 → ran (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅)))
102101ralrimiv 2959 . . . . . . . . . . . . . . . . 17 (𝑅𝑉 → ∀𝑥 ∈ ℕ0 ran (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))
103102ad2antll 764 . . . . . . . . . . . . . . . 16 ((0 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → ∀𝑥 ∈ ℕ0 ran (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))
10494imim1d 82 . . . . . . . . . . . . . . . . 17 ((0 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → ((𝑥 ∈ ℕ0 → ran (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅)) → (𝑥 ∈ ({1} ∩ 𝑍) → ran (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))))
105104ralimdv2 2955 . . . . . . . . . . . . . . . 16 ((0 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → (∀𝑥 ∈ ℕ0 ran (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅) → ∀𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅)))
106103, 105mpd 15 . . . . . . . . . . . . . . 15 ((0 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → ∀𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))
107 iunss 4527 . . . . . . . . . . . . . . 15 ( 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅) ↔ ∀𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))
108106, 107sylibr 224 . . . . . . . . . . . . . 14 ((0 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))
10999, 108unssd 3767 . . . . . . . . . . . . 13 ((0 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → ( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥)) ⊆ (dom 𝑅 ∪ ran 𝑅))
110 ssequn2 3764 . . . . . . . . . . . . 13 (( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥)) ⊆ (dom 𝑅 ∪ ran 𝑅) ↔ ((dom 𝑅 ∪ ran 𝑅) ∪ ( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥))) = (dom 𝑅 ∪ ran 𝑅))
111109, 110sylib 208 . . . . . . . . . . . 12 ((0 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → ((dom 𝑅 ∪ ran 𝑅) ∪ ( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥))) = (dom 𝑅 ∪ ran 𝑅))
11285, 111eqtrd 2655 . . . . . . . . . . 11 ((0 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → (( 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥)) ∪ ( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥))) = (dom 𝑅 ∪ ran 𝑅))
113112ex 450 . . . . . . . . . 10 (0 ∈ 𝑍 → ((𝑍 ⊆ ℕ0𝑅𝑉) → (( 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥)) ∪ ( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥))) = (dom 𝑅 ∪ ran 𝑅)))
114 simpl 473 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → 1 ∈ 𝑍)
115114snssd 4309 . . . . . . . . . . . . . . . . . 18 ((1 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → {1} ⊆ 𝑍)
116 df-ss 3569 . . . . . . . . . . . . . . . . . 18 ({1} ⊆ 𝑍 ↔ ({1} ∩ 𝑍) = {1})
117115, 116sylib 208 . . . . . . . . . . . . . . . . 17 ((1 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → ({1} ∩ 𝑍) = {1})
118117iuneq1d 4511 . . . . . . . . . . . . . . . 16 ((1 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) = 𝑥 ∈ {1}dom (𝑅𝑟𝑥))
119 1ex 9979 . . . . . . . . . . . . . . . . 17 1 ∈ V
120 oveq2 6612 . . . . . . . . . . . . . . . . . 18 (𝑥 = 1 → (𝑅𝑟𝑥) = (𝑅𝑟1))
121120dmeqd 5286 . . . . . . . . . . . . . . . . 17 (𝑥 = 1 → dom (𝑅𝑟𝑥) = dom (𝑅𝑟1))
122119, 121iunxsn 4569 . . . . . . . . . . . . . . . 16 𝑥 ∈ {1}dom (𝑅𝑟𝑥) = dom (𝑅𝑟1)
123118, 122syl6eq 2671 . . . . . . . . . . . . . . 15 ((1 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) = dom (𝑅𝑟1))
124 relexp1g 13700 . . . . . . . . . . . . . . . . 17 (𝑅𝑉 → (𝑅𝑟1) = 𝑅)
125124ad2antll 764 . . . . . . . . . . . . . . . 16 ((1 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → (𝑅𝑟1) = 𝑅)
126125dmeqd 5286 . . . . . . . . . . . . . . 15 ((1 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → dom (𝑅𝑟1) = dom 𝑅)
127123, 126eqtrd 2655 . . . . . . . . . . . . . 14 ((1 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) = dom 𝑅)
128117iuneq1d 4511 . . . . . . . . . . . . . . . 16 ((1 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥) = 𝑥 ∈ {1}ran (𝑅𝑟𝑥))
129120rneqd 5313 . . . . . . . . . . . . . . . . 17 (𝑥 = 1 → ran (𝑅𝑟𝑥) = ran (𝑅𝑟1))
130119, 129iunxsn 4569 . . . . . . . . . . . . . . . 16 𝑥 ∈ {1}ran (𝑅𝑟𝑥) = ran (𝑅𝑟1)
131128, 130syl6eq 2671 . . . . . . . . . . . . . . 15 ((1 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥) = ran (𝑅𝑟1))
132125rneqd 5313 . . . . . . . . . . . . . . 15 ((1 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → ran (𝑅𝑟1) = ran 𝑅)
133131, 132eqtrd 2655 . . . . . . . . . . . . . 14 ((1 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥) = ran 𝑅)
134127, 133uneq12d 3746 . . . . . . . . . . . . 13 ((1 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → ( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥)) = (dom 𝑅 ∪ ran 𝑅))
135134uneq2d 3745 . . . . . . . . . . . 12 ((1 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → (( 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥)) ∪ ( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥))) = (( 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥)) ∪ (dom 𝑅 ∪ ran 𝑅)))
13688ad2antll 764 . . . . . . . . . . . . . . . 16 ((1 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → ∀𝑥 ∈ ℕ0 dom (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))
137 olc 399 . . . . . . . . . . . . . . . . . . . . 21 (𝑍 ⊆ ℕ0 → ({0} ⊆ ℕ0𝑍 ⊆ ℕ0))
138137ad2antrl 763 . . . . . . . . . . . . . . . . . . . 20 ((1 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → ({0} ⊆ ℕ0𝑍 ⊆ ℕ0))
139 inss 3820 . . . . . . . . . . . . . . . . . . . 20 (({0} ⊆ ℕ0𝑍 ⊆ ℕ0) → ({0} ∩ 𝑍) ⊆ ℕ0)
140138, 139syl 17 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → ({0} ∩ 𝑍) ⊆ ℕ0)
141140sseld 3582 . . . . . . . . . . . . . . . . . 18 ((1 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → (𝑥 ∈ ({0} ∩ 𝑍) → 𝑥 ∈ ℕ0))
142141imim1d 82 . . . . . . . . . . . . . . . . 17 ((1 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → ((𝑥 ∈ ℕ0 → dom (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅)) → (𝑥 ∈ ({0} ∩ 𝑍) → dom (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))))
143142ralimdv2 2955 . . . . . . . . . . . . . . . 16 ((1 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → (∀𝑥 ∈ ℕ0 dom (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅) → ∀𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅)))
144136, 143mpd 15 . . . . . . . . . . . . . . 15 ((1 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → ∀𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))
145 iunss 4527 . . . . . . . . . . . . . . 15 ( 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅) ↔ ∀𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))
146144, 145sylibr 224 . . . . . . . . . . . . . 14 ((1 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))
147102ad2antll 764 . . . . . . . . . . . . . . . 16 ((1 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → ∀𝑥 ∈ ℕ0 ran (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))
148141imim1d 82 . . . . . . . . . . . . . . . . 17 ((1 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → ((𝑥 ∈ ℕ0 → ran (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅)) → (𝑥 ∈ ({0} ∩ 𝑍) → ran (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))))
149148ralimdv2 2955 . . . . . . . . . . . . . . . 16 ((1 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → (∀𝑥 ∈ ℕ0 ran (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅) → ∀𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅)))
150147, 149mpd 15 . . . . . . . . . . . . . . 15 ((1 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → ∀𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))
151 iunss 4527 . . . . . . . . . . . . . . 15 ( 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅) ↔ ∀𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))
152150, 151sylibr 224 . . . . . . . . . . . . . 14 ((1 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))
153146, 152unssd 3767 . . . . . . . . . . . . 13 ((1 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → ( 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥)) ⊆ (dom 𝑅 ∪ ran 𝑅))
154 ssequn1 3761 . . . . . . . . . . . . 13 (( 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥)) ⊆ (dom 𝑅 ∪ ran 𝑅) ↔ (( 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥)) ∪ (dom 𝑅 ∪ ran 𝑅)) = (dom 𝑅 ∪ ran 𝑅))
155153, 154sylib 208 . . . . . . . . . . . 12 ((1 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → (( 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥)) ∪ (dom 𝑅 ∪ ran 𝑅)) = (dom 𝑅 ∪ ran 𝑅))
156135, 155eqtrd 2655 . . . . . . . . . . 11 ((1 ∈ 𝑍 ∧ (𝑍 ⊆ ℕ0𝑅𝑉)) → (( 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥)) ∪ ( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥))) = (dom 𝑅 ∪ ran 𝑅))
157156ex 450 . . . . . . . . . 10 (1 ∈ 𝑍 → ((𝑍 ⊆ ℕ0𝑅𝑉) → (( 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥)) ∪ ( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥))) = (dom 𝑅 ∪ ran 𝑅)))
158113, 157jaoi 394 . . . . . . . . 9 ((0 ∈ 𝑍 ∨ 1 ∈ 𝑍) → ((𝑍 ⊆ ℕ0𝑅𝑉) → (( 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥)) ∪ ( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥))) = (dom 𝑅 ∪ ran 𝑅)))
15957, 158syl 17 . . . . . . . 8 (({0, 1} ∩ 𝑍) ≠ ∅ → ((𝑍 ⊆ ℕ0𝑅𝑉) → (( 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥)) ∪ ( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥))) = (dom 𝑅 ∪ ran 𝑅)))
1601593impib 1259 . . . . . . 7 ((({0, 1} ∩ 𝑍) ≠ ∅ ∧ 𝑍 ⊆ ℕ0𝑅𝑉) → (( 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥)) ∪ ( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥))) = (dom 𝑅 ∪ ran 𝑅))
1611603com13 1267 . . . . . 6 ((𝑅𝑉𝑍 ⊆ ℕ0 ∧ ({0, 1} ∩ 𝑍) ≠ ∅) → (( 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥)) ∪ ( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥))) = (dom 𝑅 ∪ ran 𝑅))
162161uneq1d 3744 . . . . 5 ((𝑅𝑉𝑍 ⊆ ℕ0 ∧ ({0, 1} ∩ 𝑍) ≠ ∅) → ((( 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥)) ∪ ( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥))) ∪ ( 𝑥𝑍 dom (𝑅𝑟𝑥) ∪ 𝑥𝑍 ran (𝑅𝑟𝑥))) = ((dom 𝑅 ∪ ran 𝑅) ∪ ( 𝑥𝑍 dom (𝑅𝑟𝑥) ∪ 𝑥𝑍 ran (𝑅𝑟𝑥))))
16388adantr 481 . . . . . . . . . 10 ((𝑅𝑉𝑍 ⊆ ℕ0) → ∀𝑥 ∈ ℕ0 dom (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))
164 ssel 3577 . . . . . . . . . . . . 13 (𝑍 ⊆ ℕ0 → (𝑥𝑍𝑥 ∈ ℕ0))
165164adantl 482 . . . . . . . . . . . 12 ((𝑅𝑉𝑍 ⊆ ℕ0) → (𝑥𝑍𝑥 ∈ ℕ0))
166165imim1d 82 . . . . . . . . . . 11 ((𝑅𝑉𝑍 ⊆ ℕ0) → ((𝑥 ∈ ℕ0 → dom (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅)) → (𝑥𝑍 → dom (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))))
167166ralimdv2 2955 . . . . . . . . . 10 ((𝑅𝑉𝑍 ⊆ ℕ0) → (∀𝑥 ∈ ℕ0 dom (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅) → ∀𝑥𝑍 dom (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅)))
168163, 167mpd 15 . . . . . . . . 9 ((𝑅𝑉𝑍 ⊆ ℕ0) → ∀𝑥𝑍 dom (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))
169 iunss 4527 . . . . . . . . 9 ( 𝑥𝑍 dom (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅) ↔ ∀𝑥𝑍 dom (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))
170168, 169sylibr 224 . . . . . . . 8 ((𝑅𝑉𝑍 ⊆ ℕ0) → 𝑥𝑍 dom (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))
171102adantr 481 . . . . . . . . . 10 ((𝑅𝑉𝑍 ⊆ ℕ0) → ∀𝑥 ∈ ℕ0 ran (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))
172165imim1d 82 . . . . . . . . . . 11 ((𝑅𝑉𝑍 ⊆ ℕ0) → ((𝑥 ∈ ℕ0 → ran (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅)) → (𝑥𝑍 → ran (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))))
173172ralimdv2 2955 . . . . . . . . . 10 ((𝑅𝑉𝑍 ⊆ ℕ0) → (∀𝑥 ∈ ℕ0 ran (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅) → ∀𝑥𝑍 ran (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅)))
174171, 173mpd 15 . . . . . . . . 9 ((𝑅𝑉𝑍 ⊆ ℕ0) → ∀𝑥𝑍 ran (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))
175 iunss 4527 . . . . . . . . 9 ( 𝑥𝑍 ran (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅) ↔ ∀𝑥𝑍 ran (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))
176174, 175sylibr 224 . . . . . . . 8 ((𝑅𝑉𝑍 ⊆ ℕ0) → 𝑥𝑍 ran (𝑅𝑟𝑥) ⊆ (dom 𝑅 ∪ ran 𝑅))
177170, 176unssd 3767 . . . . . . 7 ((𝑅𝑉𝑍 ⊆ ℕ0) → ( 𝑥𝑍 dom (𝑅𝑟𝑥) ∪ 𝑥𝑍 ran (𝑅𝑟𝑥)) ⊆ (dom 𝑅 ∪ ran 𝑅))
1781773adant3 1079 . . . . . 6 ((𝑅𝑉𝑍 ⊆ ℕ0 ∧ ({0, 1} ∩ 𝑍) ≠ ∅) → ( 𝑥𝑍 dom (𝑅𝑟𝑥) ∪ 𝑥𝑍 ran (𝑅𝑟𝑥)) ⊆ (dom 𝑅 ∪ ran 𝑅))
179 ssequn2 3764 . . . . . 6 (( 𝑥𝑍 dom (𝑅𝑟𝑥) ∪ 𝑥𝑍 ran (𝑅𝑟𝑥)) ⊆ (dom 𝑅 ∪ ran 𝑅) ↔ ((dom 𝑅 ∪ ran 𝑅) ∪ ( 𝑥𝑍 dom (𝑅𝑟𝑥) ∪ 𝑥𝑍 ran (𝑅𝑟𝑥))) = (dom 𝑅 ∪ ran 𝑅))
180178, 179sylib 208 . . . . 5 ((𝑅𝑉𝑍 ⊆ ℕ0 ∧ ({0, 1} ∩ 𝑍) ≠ ∅) → ((dom 𝑅 ∪ ran 𝑅) ∪ ( 𝑥𝑍 dom (𝑅𝑟𝑥) ∪ 𝑥𝑍 ran (𝑅𝑟𝑥))) = (dom 𝑅 ∪ ran 𝑅))
181162, 180eqtrd 2655 . . . 4 ((𝑅𝑉𝑍 ⊆ ℕ0 ∧ ({0, 1} ∩ 𝑍) ≠ ∅) → ((( 𝑥 ∈ ({0} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({0} ∩ 𝑍)ran (𝑅𝑟𝑥)) ∪ ( 𝑥 ∈ ({1} ∩ 𝑍)dom (𝑅𝑟𝑥) ∪ 𝑥 ∈ ({1} ∩ 𝑍)ran (𝑅𝑟𝑥))) ∪ ( 𝑥𝑍 dom (𝑅𝑟𝑥) ∪ 𝑥𝑍 ran (𝑅𝑟𝑥))) = (dom 𝑅 ∪ ran 𝑅))
18235, 181syl5eq 2667 . . 3 ((𝑅𝑉𝑍 ⊆ ℕ0 ∧ ({0, 1} ∩ 𝑍) ≠ ∅) → (dom 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅𝑟𝑥) ∪ ran 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅𝑟𝑥)) = (dom 𝑅 ∪ ran 𝑅))
183 nn0ex 11242 . . . . . . 7 0 ∈ V
184183ssex 4762 . . . . . 6 (𝑍 ⊆ ℕ0𝑍 ∈ V)
185 incom 3783 . . . . . . . . . 10 (𝑍 ∩ {0}) = ({0} ∩ 𝑍)
186 inex1g 4761 . . . . . . . . . 10 (𝑍 ∈ V → (𝑍 ∩ {0}) ∈ V)
187185, 186syl5eqelr 2703 . . . . . . . . 9 (𝑍 ∈ V → ({0} ∩ 𝑍) ∈ V)
188 incom 3783 . . . . . . . . . 10 (𝑍 ∩ {1}) = ({1} ∩ 𝑍)
189 inex1g 4761 . . . . . . . . . 10 (𝑍 ∈ V → (𝑍 ∩ {1}) ∈ V)
190188, 189syl5eqelr 2703 . . . . . . . . 9 (𝑍 ∈ V → ({1} ∩ 𝑍) ∈ V)
191 unexg 6912 . . . . . . . . 9 ((({0} ∩ 𝑍) ∈ V ∧ ({1} ∩ 𝑍) ∈ V) → (({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∈ V)
192187, 190, 191syl2anc 692 . . . . . . . 8 (𝑍 ∈ V → (({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∈ V)
193 unexg 6912 . . . . . . . 8 (((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∈ V ∧ 𝑍 ∈ V) → ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍) ∈ V)
194192, 193mpancom 702 . . . . . . 7 (𝑍 ∈ V → ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍) ∈ V)
195 ovex 6632 . . . . . . . 8 (𝑅𝑟𝑥) ∈ V
196195rgenw 2919 . . . . . . 7 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅𝑟𝑥) ∈ V
197 iunexg 7089 . . . . . . 7 ((((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍) ∈ V ∧ ∀𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅𝑟𝑥) ∈ V) → 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅𝑟𝑥) ∈ V)
198194, 196, 197sylancl 693 . . . . . 6 (𝑍 ∈ V → 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅𝑟𝑥) ∈ V)
199184, 198syl 17 . . . . 5 (𝑍 ⊆ ℕ0 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅𝑟𝑥) ∈ V)
2001993ad2ant2 1081 . . . 4 ((𝑅𝑉𝑍 ⊆ ℕ0 ∧ ({0, 1} ∩ 𝑍) ≠ ∅) → 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅𝑟𝑥) ∈ V)
201 simp1 1059 . . . 4 ((𝑅𝑉𝑍 ⊆ ℕ0 ∧ ({0, 1} ∩ 𝑍) ≠ ∅) → 𝑅𝑉)
202 relexp0eq 37471 . . . 4 (( 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅𝑟𝑥) ∈ V ∧ 𝑅𝑉) → ((dom 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅𝑟𝑥) ∪ ran 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅𝑟𝑥)) = (dom 𝑅 ∪ ran 𝑅) ↔ ( 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅𝑟𝑥)↑𝑟0) = (𝑅𝑟0)))
203200, 201, 202syl2anc 692 . . 3 ((𝑅𝑉𝑍 ⊆ ℕ0 ∧ ({0, 1} ∩ 𝑍) ≠ ∅) → ((dom 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅𝑟𝑥) ∪ ran 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅𝑟𝑥)) = (dom 𝑅 ∪ ran 𝑅) ↔ ( 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅𝑟𝑥)↑𝑟0) = (𝑅𝑟0)))
204182, 203mpbid 222 . 2 ((𝑅𝑉𝑍 ⊆ ℕ0 ∧ ({0, 1} ∩ 𝑍) ≠ ∅) → ( 𝑥 ∈ ((({0} ∩ 𝑍) ∪ ({1} ∩ 𝑍)) ∪ 𝑍)(𝑅𝑟𝑥)↑𝑟0) = (𝑅𝑟0))
20512, 204syl5eq 2667 1 ((𝑅𝑉𝑍 ⊆ ℕ0 ∧ ({0, 1} ∩ 𝑍) ≠ ∅) → ( 𝑥𝑍 (𝑅𝑟𝑥)↑𝑟0) = (𝑅𝑟0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wral 2907  Vcvv 3186  cun 3553  cin 3554  wss 3555  c0 3891  {csn 4148  {cpr 4150   ciun 4485   I cid 4984  dom cdm 5074  ran crn 5075  cres 5076  (class class class)co 6604  0cc0 9880  1c1 9881  0cn0 11236  𝑟crelexp 13694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-n0 11237  df-z 11322  df-uz 11632  df-seq 12742  df-relexp 13695
This theorem is referenced by:  corclrcl  37477  corcltrcl  37509
  Copyright terms: Public domain W3C validator