Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrx2plord2 Structured version   Visualization version   GIF version

Theorem rrx2plord2 44783
Description: The lexicographical ordering for points in the two dimensional Euclidean plane: if the first coordinates of two points are equal, a point is less than another point iff the second coordinate of the point is less than the second coordinate of the other point. (Contributed by AV, 12-Mar-2023.)
Hypotheses
Ref Expression
rrx2plord.o 𝑂 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑅𝑦𝑅) ∧ ((𝑥‘1) < (𝑦‘1) ∨ ((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2))))}
rrx2plord2.r 𝑅 = (ℝ ↑m {1, 2})
Assertion
Ref Expression
rrx2plord2 ((𝑋𝑅𝑌𝑅 ∧ (𝑋‘1) = (𝑌‘1)) → (𝑋𝑂𝑌 ↔ (𝑋‘2) < (𝑌‘2)))
Distinct variable groups:   𝑥,𝑅,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝑂(𝑥,𝑦)

Proof of Theorem rrx2plord2
StepHypRef Expression
1 rrx2plord.o . . . 4 𝑂 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑅𝑦𝑅) ∧ ((𝑥‘1) < (𝑦‘1) ∨ ((𝑥‘1) = (𝑦‘1) ∧ (𝑥‘2) < (𝑦‘2))))}
21rrx2plord 44781 . . 3 ((𝑋𝑅𝑌𝑅) → (𝑋𝑂𝑌 ↔ ((𝑋‘1) < (𝑌‘1) ∨ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2)))))
323adant3 1127 . 2 ((𝑋𝑅𝑌𝑅 ∧ (𝑋‘1) = (𝑌‘1)) → (𝑋𝑂𝑌 ↔ ((𝑋‘1) < (𝑌‘1) ∨ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2)))))
4 eqid 2820 . . . . . . . . . . . 12 {1, 2} = {1, 2}
5 rrx2plord2.r . . . . . . . . . . . 12 𝑅 = (ℝ ↑m {1, 2})
64, 5rrx2pxel 44772 . . . . . . . . . . 11 (𝑋𝑅 → (𝑋‘1) ∈ ℝ)
76adantr 483 . . . . . . . . . 10 ((𝑋𝑅𝑌𝑅) → (𝑋‘1) ∈ ℝ)
8 ltne 10730 . . . . . . . . . . 11 (((𝑋‘1) ∈ ℝ ∧ (𝑋‘1) < (𝑌‘1)) → (𝑌‘1) ≠ (𝑋‘1))
98necomd 3070 . . . . . . . . . 10 (((𝑋‘1) ∈ ℝ ∧ (𝑋‘1) < (𝑌‘1)) → (𝑋‘1) ≠ (𝑌‘1))
107, 9sylan 582 . . . . . . . . 9 (((𝑋𝑅𝑌𝑅) ∧ (𝑋‘1) < (𝑌‘1)) → (𝑋‘1) ≠ (𝑌‘1))
1110ex 415 . . . . . . . 8 ((𝑋𝑅𝑌𝑅) → ((𝑋‘1) < (𝑌‘1) → (𝑋‘1) ≠ (𝑌‘1)))
12 eqneqall 3026 . . . . . . . 8 ((𝑋‘1) = (𝑌‘1) → ((𝑋‘1) ≠ (𝑌‘1) → (𝑋‘2) < (𝑌‘2)))
1311, 12syl9 77 . . . . . . 7 ((𝑋𝑅𝑌𝑅) → ((𝑋‘1) = (𝑌‘1) → ((𝑋‘1) < (𝑌‘1) → (𝑋‘2) < (𝑌‘2))))
14133impia 1112 . . . . . 6 ((𝑋𝑅𝑌𝑅 ∧ (𝑋‘1) = (𝑌‘1)) → ((𝑋‘1) < (𝑌‘1) → (𝑋‘2) < (𝑌‘2)))
1514com12 32 . . . . 5 ((𝑋‘1) < (𝑌‘1) → ((𝑋𝑅𝑌𝑅 ∧ (𝑋‘1) = (𝑌‘1)) → (𝑋‘2) < (𝑌‘2)))
16 simpr 487 . . . . . 6 (((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2)) → (𝑋‘2) < (𝑌‘2))
1716a1d 25 . . . . 5 (((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2)) → ((𝑋𝑅𝑌𝑅 ∧ (𝑋‘1) = (𝑌‘1)) → (𝑋‘2) < (𝑌‘2)))
1815, 17jaoi 853 . . . 4 (((𝑋‘1) < (𝑌‘1) ∨ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2))) → ((𝑋𝑅𝑌𝑅 ∧ (𝑋‘1) = (𝑌‘1)) → (𝑋‘2) < (𝑌‘2)))
1918com12 32 . . 3 ((𝑋𝑅𝑌𝑅 ∧ (𝑋‘1) = (𝑌‘1)) → (((𝑋‘1) < (𝑌‘1) ∨ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2))) → (𝑋‘2) < (𝑌‘2)))
20 olc 864 . . . . 5 (((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2)) → ((𝑋‘1) < (𝑌‘1) ∨ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2))))
2120ex 415 . . . 4 ((𝑋‘1) = (𝑌‘1) → ((𝑋‘2) < (𝑌‘2) → ((𝑋‘1) < (𝑌‘1) ∨ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2)))))
22213ad2ant3 1130 . . 3 ((𝑋𝑅𝑌𝑅 ∧ (𝑋‘1) = (𝑌‘1)) → ((𝑋‘2) < (𝑌‘2) → ((𝑋‘1) < (𝑌‘1) ∨ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2)))))
2319, 22impbid 214 . 2 ((𝑋𝑅𝑌𝑅 ∧ (𝑋‘1) = (𝑌‘1)) → (((𝑋‘1) < (𝑌‘1) ∨ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) < (𝑌‘2))) ↔ (𝑋‘2) < (𝑌‘2)))
243, 23bitrd 281 1 ((𝑋𝑅𝑌𝑅 ∧ (𝑋‘1) = (𝑌‘1)) → (𝑋𝑂𝑌 ↔ (𝑋‘2) < (𝑌‘2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843  w3a 1082   = wceq 1536  wcel 2113  wne 3015  {cpr 4562   class class class wbr 5059  {copab 5121  cfv 6348  (class class class)co 7149  m cmap 8399  cr 10529  1c1 10531   < clt 10668  2c2 11686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-resscn 10587  ax-1cn 10588  ax-pre-lttri 10604  ax-pre-lttrn 10605
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7152  df-oprab 7153  df-mpo 7154  df-1st 7682  df-2nd 7683  df-er 8282  df-map 8401  df-en 8503  df-dom 8504  df-sdom 8505  df-pnf 10670  df-mnf 10671  df-ltxr 10673
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator