Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrx2pnecoorneor Structured version   Visualization version   GIF version

Theorem rrx2pnecoorneor 44776
Description: If two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2 are different, then they are different at least at one coordinate. (Contributed by AV, 26-Feb-2023.)
Hypotheses
Ref Expression
rrx2pnecoorneor.i 𝐼 = {1, 2}
rrx2pnecoorneor.b 𝑃 = (ℝ ↑m 𝐼)
Assertion
Ref Expression
rrx2pnecoorneor ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2)))

Proof of Theorem rrx2pnecoorneor
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 simpr 487 . . . . . . 7 (((𝑋𝑃𝑌𝑃) ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2))) → ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2)))
2 rrx2pnecoorneor.i . . . . . . . . 9 𝐼 = {1, 2}
32raleqi 3412 . . . . . . . 8 (∀𝑖𝐼 (𝑋𝑖) = (𝑌𝑖) ↔ ∀𝑖 ∈ {1, 2} (𝑋𝑖) = (𝑌𝑖))
4 1ex 10630 . . . . . . . . 9 1 ∈ V
5 2ex 11708 . . . . . . . . 9 2 ∈ V
6 fveq2 6663 . . . . . . . . . 10 (𝑖 = 1 → (𝑋𝑖) = (𝑋‘1))
7 fveq2 6663 . . . . . . . . . 10 (𝑖 = 1 → (𝑌𝑖) = (𝑌‘1))
86, 7eqeq12d 2836 . . . . . . . . 9 (𝑖 = 1 → ((𝑋𝑖) = (𝑌𝑖) ↔ (𝑋‘1) = (𝑌‘1)))
9 fveq2 6663 . . . . . . . . . 10 (𝑖 = 2 → (𝑋𝑖) = (𝑋‘2))
10 fveq2 6663 . . . . . . . . . 10 (𝑖 = 2 → (𝑌𝑖) = (𝑌‘2))
119, 10eqeq12d 2836 . . . . . . . . 9 (𝑖 = 2 → ((𝑋𝑖) = (𝑌𝑖) ↔ (𝑋‘2) = (𝑌‘2)))
124, 5, 8, 11ralpr 4629 . . . . . . . 8 (∀𝑖 ∈ {1, 2} (𝑋𝑖) = (𝑌𝑖) ↔ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2)))
133, 12bitri 277 . . . . . . 7 (∀𝑖𝐼 (𝑋𝑖) = (𝑌𝑖) ↔ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2)))
141, 13sylibr 236 . . . . . 6 (((𝑋𝑃𝑌𝑃) ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2))) → ∀𝑖𝐼 (𝑋𝑖) = (𝑌𝑖))
15 elmapfn 8422 . . . . . . . . . 10 (𝑋 ∈ (ℝ ↑m 𝐼) → 𝑋 Fn 𝐼)
16 rrx2pnecoorneor.b . . . . . . . . . 10 𝑃 = (ℝ ↑m 𝐼)
1715, 16eleq2s 2930 . . . . . . . . 9 (𝑋𝑃𝑋 Fn 𝐼)
18 elmapfn 8422 . . . . . . . . . 10 (𝑌 ∈ (ℝ ↑m 𝐼) → 𝑌 Fn 𝐼)
1918, 16eleq2s 2930 . . . . . . . . 9 (𝑌𝑃𝑌 Fn 𝐼)
2017, 19anim12i 614 . . . . . . . 8 ((𝑋𝑃𝑌𝑃) → (𝑋 Fn 𝐼𝑌 Fn 𝐼))
2120adantr 483 . . . . . . 7 (((𝑋𝑃𝑌𝑃) ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2))) → (𝑋 Fn 𝐼𝑌 Fn 𝐼))
22 eqfnfv 6795 . . . . . . 7 ((𝑋 Fn 𝐼𝑌 Fn 𝐼) → (𝑋 = 𝑌 ↔ ∀𝑖𝐼 (𝑋𝑖) = (𝑌𝑖)))
2321, 22syl 17 . . . . . 6 (((𝑋𝑃𝑌𝑃) ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2))) → (𝑋 = 𝑌 ↔ ∀𝑖𝐼 (𝑋𝑖) = (𝑌𝑖)))
2414, 23mpbird 259 . . . . 5 (((𝑋𝑃𝑌𝑃) ∧ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2))) → 𝑋 = 𝑌)
2524ex 415 . . . 4 ((𝑋𝑃𝑌𝑃) → (((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2)) → 𝑋 = 𝑌))
2625necon3ad 3028 . . 3 ((𝑋𝑃𝑌𝑃) → (𝑋𝑌 → ¬ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2))))
27263impia 1112 . 2 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ¬ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2)))
28 neorian 3110 . 2 (((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2)) ↔ ¬ ((𝑋‘1) = (𝑌‘1) ∧ (𝑋‘2) = (𝑌‘2)))
2927, 28sylibr 236 1 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1082   = wceq 1536  wcel 2113  wne 3015  wral 3137  {cpr 4562   Fn wfn 6343  cfv 6348  (class class class)co 7149  m cmap 8399  cr 10529  1c1 10531  2c2 11686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-1cn 10588  ax-addcl 10590
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-ral 3142  df-rex 3143  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-fv 6356  df-ov 7152  df-oprab 7153  df-mpo 7154  df-1st 7682  df-2nd 7683  df-map 8401  df-2 11694
This theorem is referenced by:  rrx2pnedifcoorneor  44777  inlinecirc02p  44848
  Copyright terms: Public domain W3C validator