Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrx2pnedifcoorneor Structured version   Visualization version   GIF version

Theorem rrx2pnedifcoorneor 44752
Description: If two different points 𝑋 and 𝑌 in a real Euclidean space of dimension 2 are different, then at least one difference of two corresponding coordinates is not 0. (Contributed by AV, 26-Feb-2023.)
Hypotheses
Ref Expression
rrx2pnecoorneor.i 𝐼 = {1, 2}
rrx2pnecoorneor.b 𝑃 = (ℝ ↑m 𝐼)
rrx2pnedifcoorneor.a 𝐴 = ((𝑌‘1) − (𝑋‘1))
rrx2pnedifcoorneor.b 𝐵 = ((𝑌‘2) − (𝑋‘2))
Assertion
Ref Expression
rrx2pnedifcoorneor ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0))

Proof of Theorem rrx2pnedifcoorneor
StepHypRef Expression
1 rrx2pnecoorneor.i . . 3 𝐼 = {1, 2}
2 rrx2pnecoorneor.b . . 3 𝑃 = (ℝ ↑m 𝐼)
31, 2rrx2pnecoorneor 44751 . 2 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2)))
4 rrx2pnedifcoorneor.a . . . . . 6 𝐴 = ((𝑌‘1) − (𝑋‘1))
54neeq1i 3080 . . . . 5 (𝐴 ≠ 0 ↔ ((𝑌‘1) − (𝑋‘1)) ≠ 0)
6 rrx2pnedifcoorneor.b . . . . . 6 𝐵 = ((𝑌‘2) − (𝑋‘2))
76neeq1i 3080 . . . . 5 (𝐵 ≠ 0 ↔ ((𝑌‘2) − (𝑋‘2)) ≠ 0)
85, 7orbi12i 911 . . . 4 ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ↔ (((𝑌‘1) − (𝑋‘1)) ≠ 0 ∨ ((𝑌‘2) − (𝑋‘2)) ≠ 0))
91, 2rrx2pxel 44747 . . . . . . . . 9 (𝑌𝑃 → (𝑌‘1) ∈ ℝ)
109recnd 10669 . . . . . . . 8 (𝑌𝑃 → (𝑌‘1) ∈ ℂ)
111, 2rrx2pxel 44747 . . . . . . . . 9 (𝑋𝑃 → (𝑋‘1) ∈ ℝ)
1211recnd 10669 . . . . . . . 8 (𝑋𝑃 → (𝑋‘1) ∈ ℂ)
13 subeq0 10912 . . . . . . . 8 (((𝑌‘1) ∈ ℂ ∧ (𝑋‘1) ∈ ℂ) → (((𝑌‘1) − (𝑋‘1)) = 0 ↔ (𝑌‘1) = (𝑋‘1)))
1410, 12, 13syl2anr 598 . . . . . . 7 ((𝑋𝑃𝑌𝑃) → (((𝑌‘1) − (𝑋‘1)) = 0 ↔ (𝑌‘1) = (𝑋‘1)))
1514necon3bid 3060 . . . . . 6 ((𝑋𝑃𝑌𝑃) → (((𝑌‘1) − (𝑋‘1)) ≠ 0 ↔ (𝑌‘1) ≠ (𝑋‘1)))
161, 2rrx2pyel 44748 . . . . . . . . 9 (𝑌𝑃 → (𝑌‘2) ∈ ℝ)
1716recnd 10669 . . . . . . . 8 (𝑌𝑃 → (𝑌‘2) ∈ ℂ)
181, 2rrx2pyel 44748 . . . . . . . . 9 (𝑋𝑃 → (𝑋‘2) ∈ ℝ)
1918recnd 10669 . . . . . . . 8 (𝑋𝑃 → (𝑋‘2) ∈ ℂ)
20 subeq0 10912 . . . . . . . 8 (((𝑌‘2) ∈ ℂ ∧ (𝑋‘2) ∈ ℂ) → (((𝑌‘2) − (𝑋‘2)) = 0 ↔ (𝑌‘2) = (𝑋‘2)))
2117, 19, 20syl2anr 598 . . . . . . 7 ((𝑋𝑃𝑌𝑃) → (((𝑌‘2) − (𝑋‘2)) = 0 ↔ (𝑌‘2) = (𝑋‘2)))
2221necon3bid 3060 . . . . . 6 ((𝑋𝑃𝑌𝑃) → (((𝑌‘2) − (𝑋‘2)) ≠ 0 ↔ (𝑌‘2) ≠ (𝑋‘2)))
2315, 22orbi12d 915 . . . . 5 ((𝑋𝑃𝑌𝑃) → ((((𝑌‘1) − (𝑋‘1)) ≠ 0 ∨ ((𝑌‘2) − (𝑋‘2)) ≠ 0) ↔ ((𝑌‘1) ≠ (𝑋‘1) ∨ (𝑌‘2) ≠ (𝑋‘2))))
24 necom 3069 . . . . . 6 ((𝑌‘1) ≠ (𝑋‘1) ↔ (𝑋‘1) ≠ (𝑌‘1))
25 necom 3069 . . . . . 6 ((𝑌‘2) ≠ (𝑋‘2) ↔ (𝑋‘2) ≠ (𝑌‘2))
2624, 25orbi12i 911 . . . . 5 (((𝑌‘1) ≠ (𝑋‘1) ∨ (𝑌‘2) ≠ (𝑋‘2)) ↔ ((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2)))
2723, 26syl6bb 289 . . . 4 ((𝑋𝑃𝑌𝑃) → ((((𝑌‘1) − (𝑋‘1)) ≠ 0 ∨ ((𝑌‘2) − (𝑋‘2)) ≠ 0) ↔ ((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2))))
288, 27syl5bb 285 . . 3 ((𝑋𝑃𝑌𝑃) → ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ↔ ((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2))))
29283adant3 1128 . 2 ((𝑋𝑃𝑌𝑃𝑋𝑌) → ((𝐴 ≠ 0 ∨ 𝐵 ≠ 0) ↔ ((𝑋‘1) ≠ (𝑌‘1) ∨ (𝑋‘2) ≠ (𝑌‘2))))
303, 29mpbird 259 1 ((𝑋𝑃𝑌𝑃𝑋𝑌) → (𝐴 ≠ 0 ∨ 𝐵 ≠ 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  wne 3016  {cpr 4569  cfv 6355  (class class class)co 7156  m cmap 8406  cc 10535  cr 10536  0cc0 10537  1c1 10538  cmin 10870  2c2 11693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-po 5474  df-so 5475  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7689  df-2nd 7690  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-ltxr 10680  df-sub 10872  df-2 11701
This theorem is referenced by:  rrx2pnedifcoorneorr  44753
  Copyright terms: Public domain W3C validator