MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralpr Structured version   Visualization version   GIF version

Theorem ralpr 4214
Description: Convert a quantification over a pair to a conjunction. (Contributed by NM, 3-Jun-2007.) (Revised by Mario Carneiro, 23-Apr-2015.)
Hypotheses
Ref Expression
ralpr.1 𝐴 ∈ V
ralpr.2 𝐵 ∈ V
ralpr.3 (𝑥 = 𝐴 → (𝜑𝜓))
ralpr.4 (𝑥 = 𝐵 → (𝜑𝜒))
Assertion
Ref Expression
ralpr (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓𝜒))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜓,𝑥   𝜒,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ralpr
StepHypRef Expression
1 ralpr.1 . 2 𝐴 ∈ V
2 ralpr.2 . 2 𝐵 ∈ V
3 ralpr.3 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
4 ralpr.4 . . 3 (𝑥 = 𝐵 → (𝜑𝜒))
53, 4ralprg 4210 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓𝜒)))
61, 2, 5mp2an 707 1 (∀𝑥 ∈ {𝐴, 𝐵}𝜑 ↔ (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1992  wral 2912  Vcvv 3191  {cpr 4155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ral 2917  df-v 3193  df-sbc 3423  df-un 3565  df-sn 4154  df-pr 4156
This theorem is referenced by:  fzprval  12340  fvinim0ffz  12524  wwlktovf1  13629  xpsfrnel  16139  xpsle  16157  isdrs2  16855  pmtrsn  17855  iblcnlem1  23455  lfuhgr1v0e  26033  nbgr2vtx1edg  26127  nbuhgr2vtx1edgb  26129  umgr2v2evd2  26303  2wlklem  26426  2wlkdlem5  26688  2wlkdlem10  26694  3pthdlem1  26884  upgr4cycl4dv4e  26905  numclwwlkovf2ex  27069  subfacp1lem3  30864  fprb  31365  poimirlem1  33028  ldepsnlinc  41559
  Copyright terms: Public domain W3C validator