MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snsn0non Structured version   Visualization version   GIF version

Theorem snsn0non 6309
Description: The singleton of the singleton of the empty set is not an ordinal (nor a natural number by omsson 7584). It can be used to represent an "undefined" value for a partial operation on natural or ordinal numbers. See also onxpdisj 6310. (Contributed by NM, 21-May-2004.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
Assertion
Ref Expression
snsn0non ¬ {{∅}} ∈ On

Proof of Theorem snsn0non
StepHypRef Expression
1 snex 5332 . . . . 5 {∅} ∈ V
21snid 4601 . . . 4 {∅} ∈ {{∅}}
32n0ii 4302 . . 3 ¬ {{∅}} = ∅
4 0ex 5211 . . . . . . 7 ∅ ∈ V
54snid 4601 . . . . . 6 ∅ ∈ {∅}
65n0ii 4302 . . . . 5 ¬ {∅} = ∅
7 eqcom 2828 . . . . 5 (∅ = {∅} ↔ {∅} = ∅)
86, 7mtbir 325 . . . 4 ¬ ∅ = {∅}
94elsn 4582 . . . 4 (∅ ∈ {{∅}} ↔ ∅ = {∅})
108, 9mtbir 325 . . 3 ¬ ∅ ∈ {{∅}}
113, 10pm3.2ni 877 . 2 ¬ ({{∅}} = ∅ ∨ ∅ ∈ {{∅}})
12 on0eqel 6308 . 2 ({{∅}} ∈ On → ({{∅}} = ∅ ∨ ∅ ∈ {{∅}}))
1311, 12mto 199 1 ¬ {{∅}} ∈ On
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 843   = wceq 1537  wcel 2114  c0 4291  {csn 4567  Oncon0 6191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-tr 5173  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-ord 6194  df-on 6195
This theorem is referenced by:  onnev  6311  onpsstopbas  33778
  Copyright terms: Public domain W3C validator