Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sprsymrelf Structured version   Visualization version   GIF version

Theorem sprsymrelf 43677
Description: The mapping 𝐹 is a function from the subsets of the set of pairs over a fixed set 𝑉 into the symmetric relations 𝑅 on the fixed set 𝑉. (Contributed by AV, 19-Nov-2021.)
Hypotheses
Ref Expression
sprsymrelf.p 𝑃 = 𝒫 (Pairs‘𝑉)
sprsymrelf.r 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥𝑉𝑦𝑉 (𝑥𝑟𝑦𝑦𝑟𝑥)}
sprsymrelf.f 𝐹 = (𝑝𝑃 ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}})
Assertion
Ref Expression
sprsymrelf 𝐹:𝑃𝑅
Distinct variable groups:   𝑃,𝑝   𝑉,𝑐,𝑥,𝑦   𝑝,𝑐,𝑥,𝑦,𝑟   𝑅,𝑝   𝑉,𝑟,𝑐,𝑥,𝑦
Allowed substitution hints:   𝑃(𝑥,𝑦,𝑟,𝑐)   𝑅(𝑥,𝑦,𝑟,𝑐)   𝐹(𝑥,𝑦,𝑟,𝑝,𝑐)   𝑉(𝑝)

Proof of Theorem sprsymrelf
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sprsymrelf.f . 2 𝐹 = (𝑝𝑃 ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}})
2 sprsymrelfvlem 43672 . . . . 5 (𝑝 ⊆ (Pairs‘𝑉) → {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}} ∈ 𝒫 (𝑉 × 𝑉))
3 prcom 4668 . . . . . . . . . 10 {𝑥, 𝑦} = {𝑦, 𝑥}
43a1i 11 . . . . . . . . 9 (((𝑝 ⊆ (Pairs‘𝑉) ∧ (𝑥𝑉𝑦𝑉)) ∧ 𝑐𝑝) → {𝑥, 𝑦} = {𝑦, 𝑥})
54eqeq2d 2832 . . . . . . . 8 (((𝑝 ⊆ (Pairs‘𝑉) ∧ (𝑥𝑉𝑦𝑉)) ∧ 𝑐𝑝) → (𝑐 = {𝑥, 𝑦} ↔ 𝑐 = {𝑦, 𝑥}))
65rexbidva 3296 . . . . . . 7 ((𝑝 ⊆ (Pairs‘𝑉) ∧ (𝑥𝑉𝑦𝑉)) → (∃𝑐𝑝 𝑐 = {𝑥, 𝑦} ↔ ∃𝑐𝑝 𝑐 = {𝑦, 𝑥}))
7 df-br 5067 . . . . . . . 8 (𝑥{⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}})
8 opabidw 5412 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}} ↔ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦})
97, 8bitri 277 . . . . . . 7 (𝑥{⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}𝑦 ↔ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦})
10 vex 3497 . . . . . . . 8 𝑦 ∈ V
11 vex 3497 . . . . . . . 8 𝑥 ∈ V
12 preq12 4671 . . . . . . . . . 10 ((𝑎 = 𝑦𝑏 = 𝑥) → {𝑎, 𝑏} = {𝑦, 𝑥})
1312eqeq2d 2832 . . . . . . . . 9 ((𝑎 = 𝑦𝑏 = 𝑥) → (𝑐 = {𝑎, 𝑏} ↔ 𝑐 = {𝑦, 𝑥}))
1413rexbidv 3297 . . . . . . . 8 ((𝑎 = 𝑦𝑏 = 𝑥) → (∃𝑐𝑝 𝑐 = {𝑎, 𝑏} ↔ ∃𝑐𝑝 𝑐 = {𝑦, 𝑥}))
15 preq12 4671 . . . . . . . . . . 11 ((𝑥 = 𝑎𝑦 = 𝑏) → {𝑥, 𝑦} = {𝑎, 𝑏})
1615eqeq2d 2832 . . . . . . . . . 10 ((𝑥 = 𝑎𝑦 = 𝑏) → (𝑐 = {𝑥, 𝑦} ↔ 𝑐 = {𝑎, 𝑏}))
1716rexbidv 3297 . . . . . . . . 9 ((𝑥 = 𝑎𝑦 = 𝑏) → (∃𝑐𝑝 𝑐 = {𝑥, 𝑦} ↔ ∃𝑐𝑝 𝑐 = {𝑎, 𝑏}))
1817cbvopabv 5138 . . . . . . . 8 {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}} = {⟨𝑎, 𝑏⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑎, 𝑏}}
1910, 11, 14, 18braba 5424 . . . . . . 7 (𝑦{⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}𝑥 ↔ ∃𝑐𝑝 𝑐 = {𝑦, 𝑥})
206, 9, 193bitr4g 316 . . . . . 6 ((𝑝 ⊆ (Pairs‘𝑉) ∧ (𝑥𝑉𝑦𝑉)) → (𝑥{⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}𝑦𝑦{⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}𝑥))
2120ralrimivva 3191 . . . . 5 (𝑝 ⊆ (Pairs‘𝑉) → ∀𝑥𝑉𝑦𝑉 (𝑥{⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}𝑦𝑦{⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}𝑥))
222, 21jca 514 . . . 4 (𝑝 ⊆ (Pairs‘𝑉) → ({⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}} ∈ 𝒫 (𝑉 × 𝑉) ∧ ∀𝑥𝑉𝑦𝑉 (𝑥{⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}𝑦𝑦{⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}𝑥)))
23 sprsymrelf.p . . . . . 6 𝑃 = 𝒫 (Pairs‘𝑉)
2423eleq2i 2904 . . . . 5 (𝑝𝑃𝑝 ∈ 𝒫 (Pairs‘𝑉))
25 vex 3497 . . . . . 6 𝑝 ∈ V
2625elpw 4543 . . . . 5 (𝑝 ∈ 𝒫 (Pairs‘𝑉) ↔ 𝑝 ⊆ (Pairs‘𝑉))
2724, 26bitri 277 . . . 4 (𝑝𝑃𝑝 ⊆ (Pairs‘𝑉))
28 nfopab1 5135 . . . . . . 7 𝑥{⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}
2928nfeq2 2995 . . . . . 6 𝑥 𝑟 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}
30 nfopab2 5136 . . . . . . . 8 𝑦{⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}
3130nfeq2 2995 . . . . . . 7 𝑦 𝑟 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}
32 breq 5068 . . . . . . . 8 (𝑟 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}} → (𝑥𝑟𝑦𝑥{⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}𝑦))
33 breq 5068 . . . . . . . 8 (𝑟 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}} → (𝑦𝑟𝑥𝑦{⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}𝑥))
3432, 33bibi12d 348 . . . . . . 7 (𝑟 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}} → ((𝑥𝑟𝑦𝑦𝑟𝑥) ↔ (𝑥{⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}𝑦𝑦{⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}𝑥)))
3531, 34ralbid 3231 . . . . . 6 (𝑟 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}} → (∀𝑦𝑉 (𝑥𝑟𝑦𝑦𝑟𝑥) ↔ ∀𝑦𝑉 (𝑥{⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}𝑦𝑦{⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}𝑥)))
3629, 35ralbid 3231 . . . . 5 (𝑟 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}} → (∀𝑥𝑉𝑦𝑉 (𝑥𝑟𝑦𝑦𝑟𝑥) ↔ ∀𝑥𝑉𝑦𝑉 (𝑥{⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}𝑦𝑦{⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}𝑥)))
3736elrab 3680 . . . 4 ({⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}} ∈ {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥𝑉𝑦𝑉 (𝑥𝑟𝑦𝑦𝑟𝑥)} ↔ ({⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}} ∈ 𝒫 (𝑉 × 𝑉) ∧ ∀𝑥𝑉𝑦𝑉 (𝑥{⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}𝑦𝑦{⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}𝑥)))
3822, 27, 373imtr4i 294 . . 3 (𝑝𝑃 → {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}} ∈ {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥𝑉𝑦𝑉 (𝑥𝑟𝑦𝑦𝑟𝑥)})
39 sprsymrelf.r . . 3 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥𝑉𝑦𝑉 (𝑥𝑟𝑦𝑦𝑟𝑥)}
4038, 39eleqtrrdi 2924 . 2 (𝑝𝑃 → {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}} ∈ 𝑅)
411, 40fmpti 6876 1 𝐹:𝑃𝑅
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3138  wrex 3139  {crab 3142  wss 3936  𝒫 cpw 4539  {cpr 4569  cop 4573   class class class wbr 5066  {copab 5128  cmpt 5146   × cxp 5553  wf 6351  cfv 6355  Pairscspr 43659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-spr 43660
This theorem is referenced by:  sprsymrelf1  43678  sprsymrelfo  43679
  Copyright terms: Public domain W3C validator