Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssiin Structured version   Visualization version   GIF version

Theorem ssiin 4602
 Description: Subset theorem for an indexed intersection. (Contributed by NM, 15-Oct-2003.)
Assertion
Ref Expression
ssiin (𝐶 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝐶𝐵)
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem ssiin
StepHypRef Expression
1 nfcv 2793 . 2 𝑥𝐶
21ssiinf 4601 1 (𝐶 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝐶𝐵)
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 196  ∀wral 2941   ⊆ wss 3607  ∩ ciin 4553 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-v 3233  df-in 3614  df-ss 3621  df-iin 4555 This theorem is referenced by:  cflim2  9123  ptbasfi  21432  limciun  23703  clsint2  32449  fnemeet2  32487  dihglblem4  36903  dihglblem6  36946  iooiinicc  40087  iooiinioc  40101  iinhoiicc  41209  smfsuplem1  41338
 Copyright terms: Public domain W3C validator