MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limciun Structured version   Visualization version   GIF version

Theorem limciun 23564
Description: A point is a limit of 𝐹 on the finite union 𝑥𝐴𝐵(𝑥) iff it is the limit of the restriction of 𝐹 to each 𝐵(𝑥). (Contributed by Mario Carneiro, 30-Dec-2016.)
Hypotheses
Ref Expression
limciun.1 (𝜑𝐴 ∈ Fin)
limciun.2 (𝜑 → ∀𝑥𝐴 𝐵 ⊆ ℂ)
limciun.3 (𝜑𝐹: 𝑥𝐴 𝐵⟶ℂ)
limciun.4 (𝜑𝐶 ∈ ℂ)
Assertion
Ref Expression
limciun (𝜑 → (𝐹 lim 𝐶) = (ℂ ∩ 𝑥𝐴 ((𝐹𝐵) lim 𝐶)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐹
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem limciun
Dummy variables 𝑔 𝑎 𝑘 𝑢 𝑣 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limccl 23545 . . . 4 (𝐹 lim 𝐶) ⊆ ℂ
2 limcresi 23555 . . . . . 6 (𝐹 lim 𝐶) ⊆ ((𝐹𝐵) lim 𝐶)
32rgenw 2919 . . . . 5 𝑥𝐴 (𝐹 lim 𝐶) ⊆ ((𝐹𝐵) lim 𝐶)
4 ssiin 4536 . . . . 5 ((𝐹 lim 𝐶) ⊆ 𝑥𝐴 ((𝐹𝐵) lim 𝐶) ↔ ∀𝑥𝐴 (𝐹 lim 𝐶) ⊆ ((𝐹𝐵) lim 𝐶))
53, 4mpbir 221 . . . 4 (𝐹 lim 𝐶) ⊆ 𝑥𝐴 ((𝐹𝐵) lim 𝐶)
61, 5ssini 3814 . . 3 (𝐹 lim 𝐶) ⊆ (ℂ ∩ 𝑥𝐴 ((𝐹𝐵) lim 𝐶))
76a1i 11 . 2 (𝜑 → (𝐹 lim 𝐶) ⊆ (ℂ ∩ 𝑥𝐴 ((𝐹𝐵) lim 𝐶)))
8 elriin 4559 . . . 4 (𝑦 ∈ (ℂ ∩ 𝑥𝐴 ((𝐹𝐵) lim 𝐶)) ↔ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶)))
9 simprl 793 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) → 𝑦 ∈ ℂ)
10 limciun.1 . . . . . . . . . . 11 (𝜑𝐴 ∈ Fin)
1110ad2antrr 761 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) → 𝐴 ∈ Fin)
12 simplrr 800 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) → ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))
13 nfcv 2761 . . . . . . . . . . . . . . . . . . . 20 𝑥𝐹
14 nfcsb1v 3530 . . . . . . . . . . . . . . . . . . . 20 𝑥𝑎 / 𝑥𝐵
1513, 14nfres 5358 . . . . . . . . . . . . . . . . . . 19 𝑥(𝐹𝑎 / 𝑥𝐵)
16 nfcv 2761 . . . . . . . . . . . . . . . . . . 19 𝑥 lim
17 nfcv 2761 . . . . . . . . . . . . . . . . . . 19 𝑥𝐶
1815, 16, 17nfov 6630 . . . . . . . . . . . . . . . . . 18 𝑥((𝐹𝑎 / 𝑥𝐵) lim 𝐶)
1918nfcri 2755 . . . . . . . . . . . . . . . . 17 𝑥 𝑦 ∈ ((𝐹𝑎 / 𝑥𝐵) lim 𝐶)
20 csbeq1a 3523 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑎𝐵 = 𝑎 / 𝑥𝐵)
2120reseq2d 5356 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑎 → (𝐹𝐵) = (𝐹𝑎 / 𝑥𝐵))
2221oveq1d 6619 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑎 → ((𝐹𝐵) lim 𝐶) = ((𝐹𝑎 / 𝑥𝐵) lim 𝐶))
2322eleq2d 2684 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑎 → (𝑦 ∈ ((𝐹𝐵) lim 𝐶) ↔ 𝑦 ∈ ((𝐹𝑎 / 𝑥𝐵) lim 𝐶)))
2419, 23rspc 3289 . . . . . . . . . . . . . . . 16 (𝑎𝐴 → (∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶) → 𝑦 ∈ ((𝐹𝑎 / 𝑥𝐵) lim 𝐶)))
2512, 24mpan9 486 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ 𝑎𝐴) → 𝑦 ∈ ((𝐹𝑎 / 𝑥𝐵) lim 𝐶))
26 limciun.3 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐹: 𝑥𝐴 𝐵⟶ℂ)
2726ad2antrr 761 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ 𝑎𝐴) → 𝐹: 𝑥𝐴 𝐵⟶ℂ)
28 ssiun2 4529 . . . . . . . . . . . . . . . . . . . 20 (𝑎𝐴𝑎 / 𝑥𝐵 𝑎𝐴 𝑎 / 𝑥𝐵)
29 nfcv 2761 . . . . . . . . . . . . . . . . . . . . 21 𝑎𝐵
3029, 14, 20cbviun 4523 . . . . . . . . . . . . . . . . . . . 20 𝑥𝐴 𝐵 = 𝑎𝐴 𝑎 / 𝑥𝐵
3128, 30syl6sseqr 3631 . . . . . . . . . . . . . . . . . . 19 (𝑎𝐴𝑎 / 𝑥𝐵 𝑥𝐴 𝐵)
3231adantl 482 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ 𝑎𝐴) → 𝑎 / 𝑥𝐵 𝑥𝐴 𝐵)
3327, 32fssresd 6028 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ 𝑎𝐴) → (𝐹𝑎 / 𝑥𝐵):𝑎 / 𝑥𝐵⟶ℂ)
34 simpr 477 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ 𝑎𝐴) → 𝑎𝐴)
35 limciun.2 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∀𝑥𝐴 𝐵 ⊆ ℂ)
3635ad2antrr 761 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ 𝑎𝐴) → ∀𝑥𝐴 𝐵 ⊆ ℂ)
37 nfcv 2761 . . . . . . . . . . . . . . . . . . . 20 𝑥
3814, 37nfss 3576 . . . . . . . . . . . . . . . . . . 19 𝑥𝑎 / 𝑥𝐵 ⊆ ℂ
3920sseq1d 3611 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑎 → (𝐵 ⊆ ℂ ↔ 𝑎 / 𝑥𝐵 ⊆ ℂ))
4038, 39rspc 3289 . . . . . . . . . . . . . . . . . 18 (𝑎𝐴 → (∀𝑥𝐴 𝐵 ⊆ ℂ → 𝑎 / 𝑥𝐵 ⊆ ℂ))
4134, 36, 40sylc 65 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ 𝑎𝐴) → 𝑎 / 𝑥𝐵 ⊆ ℂ)
42 limciun.4 . . . . . . . . . . . . . . . . . 18 (𝜑𝐶 ∈ ℂ)
4342ad2antrr 761 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ 𝑎𝐴) → 𝐶 ∈ ℂ)
44 eqid 2621 . . . . . . . . . . . . . . . . 17 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
4533, 41, 43, 44ellimc2 23547 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ 𝑎𝐴) → (𝑦 ∈ ((𝐹𝑎 / 𝑥𝐵) lim 𝐶) ↔ (𝑦 ∈ ℂ ∧ ∀𝑢 ∈ (TopOpen‘ℂfld)(𝑦𝑢 → ∃𝑘 ∈ (TopOpen‘ℂfld)(𝐶𝑘 ∧ ((𝐹𝑎 / 𝑥𝐵) “ (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶}))) ⊆ 𝑢)))))
4645adantlr 750 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ 𝑎𝐴) → (𝑦 ∈ ((𝐹𝑎 / 𝑥𝐵) lim 𝐶) ↔ (𝑦 ∈ ℂ ∧ ∀𝑢 ∈ (TopOpen‘ℂfld)(𝑦𝑢 → ∃𝑘 ∈ (TopOpen‘ℂfld)(𝐶𝑘 ∧ ((𝐹𝑎 / 𝑥𝐵) “ (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶}))) ⊆ 𝑢)))))
4725, 46mpbid 222 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ 𝑎𝐴) → (𝑦 ∈ ℂ ∧ ∀𝑢 ∈ (TopOpen‘ℂfld)(𝑦𝑢 → ∃𝑘 ∈ (TopOpen‘ℂfld)(𝐶𝑘 ∧ ((𝐹𝑎 / 𝑥𝐵) “ (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶}))) ⊆ 𝑢))))
4847simprd 479 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ 𝑎𝐴) → ∀𝑢 ∈ (TopOpen‘ℂfld)(𝑦𝑢 → ∃𝑘 ∈ (TopOpen‘ℂfld)(𝐶𝑘 ∧ ((𝐹𝑎 / 𝑥𝐵) “ (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶}))) ⊆ 𝑢)))
49 simplrl 799 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ 𝑎𝐴) → 𝑢 ∈ (TopOpen‘ℂfld))
50 simplrr 800 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ 𝑎𝐴) → 𝑦𝑢)
51 rsp 2924 . . . . . . . . . . . . 13 (∀𝑢 ∈ (TopOpen‘ℂfld)(𝑦𝑢 → ∃𝑘 ∈ (TopOpen‘ℂfld)(𝐶𝑘 ∧ ((𝐹𝑎 / 𝑥𝐵) “ (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶}))) ⊆ 𝑢)) → (𝑢 ∈ (TopOpen‘ℂfld) → (𝑦𝑢 → ∃𝑘 ∈ (TopOpen‘ℂfld)(𝐶𝑘 ∧ ((𝐹𝑎 / 𝑥𝐵) “ (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶}))) ⊆ 𝑢))))
5248, 49, 50, 51syl3c 66 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ 𝑎𝐴) → ∃𝑘 ∈ (TopOpen‘ℂfld)(𝐶𝑘 ∧ ((𝐹𝑎 / 𝑥𝐵) “ (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶}))) ⊆ 𝑢))
5352ralrimiva 2960 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) → ∀𝑎𝐴𝑘 ∈ (TopOpen‘ℂfld)(𝐶𝑘 ∧ ((𝐹𝑎 / 𝑥𝐵) “ (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶}))) ⊆ 𝑢))
54 nfv 1840 . . . . . . . . . . . 12 𝑎𝑘 ∈ (TopOpen‘ℂfld)(𝐶𝑘 ∧ ((𝐹𝐵) “ (𝑘 ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢)
55 nfcv 2761 . . . . . . . . . . . . 13 𝑥(TopOpen‘ℂfld)
56 nfv 1840 . . . . . . . . . . . . . 14 𝑥 𝐶𝑘
57 nfcv 2761 . . . . . . . . . . . . . . . . 17 𝑥𝑘
58 nfcv 2761 . . . . . . . . . . . . . . . . . 18 𝑥{𝐶}
5914, 58nfdif 3709 . . . . . . . . . . . . . . . . 17 𝑥(𝑎 / 𝑥𝐵 ∖ {𝐶})
6057, 59nfin 3798 . . . . . . . . . . . . . . . 16 𝑥(𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶}))
6115, 60nfima 5433 . . . . . . . . . . . . . . 15 𝑥((𝐹𝑎 / 𝑥𝐵) “ (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶})))
62 nfcv 2761 . . . . . . . . . . . . . . 15 𝑥𝑢
6361, 62nfss 3576 . . . . . . . . . . . . . 14 𝑥((𝐹𝑎 / 𝑥𝐵) “ (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶}))) ⊆ 𝑢
6456, 63nfan 1825 . . . . . . . . . . . . 13 𝑥(𝐶𝑘 ∧ ((𝐹𝑎 / 𝑥𝐵) “ (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶}))) ⊆ 𝑢)
6555, 64nfrex 3001 . . . . . . . . . . . 12 𝑥𝑘 ∈ (TopOpen‘ℂfld)(𝐶𝑘 ∧ ((𝐹𝑎 / 𝑥𝐵) “ (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶}))) ⊆ 𝑢)
6620difeq1d 3705 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑎 → (𝐵 ∖ {𝐶}) = (𝑎 / 𝑥𝐵 ∖ {𝐶}))
6766ineq2d 3792 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑎 → (𝑘 ∩ (𝐵 ∖ {𝐶})) = (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶})))
6821, 67imaeq12d 5426 . . . . . . . . . . . . . . 15 (𝑥 = 𝑎 → ((𝐹𝐵) “ (𝑘 ∩ (𝐵 ∖ {𝐶}))) = ((𝐹𝑎 / 𝑥𝐵) “ (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶}))))
6968sseq1d 3611 . . . . . . . . . . . . . 14 (𝑥 = 𝑎 → (((𝐹𝐵) “ (𝑘 ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢 ↔ ((𝐹𝑎 / 𝑥𝐵) “ (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶}))) ⊆ 𝑢))
7069anbi2d 739 . . . . . . . . . . . . 13 (𝑥 = 𝑎 → ((𝐶𝑘 ∧ ((𝐹𝐵) “ (𝑘 ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢) ↔ (𝐶𝑘 ∧ ((𝐹𝑎 / 𝑥𝐵) “ (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶}))) ⊆ 𝑢)))
7170rexbidv 3045 . . . . . . . . . . . 12 (𝑥 = 𝑎 → (∃𝑘 ∈ (TopOpen‘ℂfld)(𝐶𝑘 ∧ ((𝐹𝐵) “ (𝑘 ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢) ↔ ∃𝑘 ∈ (TopOpen‘ℂfld)(𝐶𝑘 ∧ ((𝐹𝑎 / 𝑥𝐵) “ (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶}))) ⊆ 𝑢)))
7254, 65, 71cbvral 3155 . . . . . . . . . . 11 (∀𝑥𝐴𝑘 ∈ (TopOpen‘ℂfld)(𝐶𝑘 ∧ ((𝐹𝐵) “ (𝑘 ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢) ↔ ∀𝑎𝐴𝑘 ∈ (TopOpen‘ℂfld)(𝐶𝑘 ∧ ((𝐹𝑎 / 𝑥𝐵) “ (𝑘 ∩ (𝑎 / 𝑥𝐵 ∖ {𝐶}))) ⊆ 𝑢))
7353, 72sylibr 224 . . . . . . . . . 10 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) → ∀𝑥𝐴𝑘 ∈ (TopOpen‘ℂfld)(𝐶𝑘 ∧ ((𝐹𝐵) “ (𝑘 ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢))
74 eleq2 2687 . . . . . . . . . . . 12 (𝑘 = (𝑔𝑥) → (𝐶𝑘𝐶 ∈ (𝑔𝑥)))
75 ineq1 3785 . . . . . . . . . . . . . 14 (𝑘 = (𝑔𝑥) → (𝑘 ∩ (𝐵 ∖ {𝐶})) = ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶})))
7675imaeq2d 5425 . . . . . . . . . . . . 13 (𝑘 = (𝑔𝑥) → ((𝐹𝐵) “ (𝑘 ∩ (𝐵 ∖ {𝐶}))) = ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))))
7776sseq1d 3611 . . . . . . . . . . . 12 (𝑘 = (𝑔𝑥) → (((𝐹𝐵) “ (𝑘 ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢 ↔ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢))
7874, 77anbi12d 746 . . . . . . . . . . 11 (𝑘 = (𝑔𝑥) → ((𝐶𝑘 ∧ ((𝐹𝐵) “ (𝑘 ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢) ↔ (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢)))
7978ac6sfi 8148 . . . . . . . . . 10 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴𝑘 ∈ (TopOpen‘ℂfld)(𝐶𝑘 ∧ ((𝐹𝐵) “ (𝑘 ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢)) → ∃𝑔(𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢)))
8011, 73, 79syl2anc 692 . . . . . . . . 9 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) → ∃𝑔(𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢)))
8144cnfldtop 22497 . . . . . . . . . . . 12 (TopOpen‘ℂfld) ∈ Top
8281a1i 11 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ (𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢))) → (TopOpen‘ℂfld) ∈ Top)
83 frn 6010 . . . . . . . . . . . 12 (𝑔:𝐴⟶(TopOpen‘ℂfld) → ran 𝑔 ⊆ (TopOpen‘ℂfld))
8483ad2antrl 763 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ (𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢))) → ran 𝑔 ⊆ (TopOpen‘ℂfld))
8511adantr 481 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ (𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢))) → 𝐴 ∈ Fin)
86 ffn 6002 . . . . . . . . . . . . . 14 (𝑔:𝐴⟶(TopOpen‘ℂfld) → 𝑔 Fn 𝐴)
8786ad2antrl 763 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ (𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢))) → 𝑔 Fn 𝐴)
88 dffn4 6078 . . . . . . . . . . . . 13 (𝑔 Fn 𝐴𝑔:𝐴onto→ran 𝑔)
8987, 88sylib 208 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ (𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢))) → 𝑔:𝐴onto→ran 𝑔)
90 fofi 8196 . . . . . . . . . . . 12 ((𝐴 ∈ Fin ∧ 𝑔:𝐴onto→ran 𝑔) → ran 𝑔 ∈ Fin)
9185, 89, 90syl2anc 692 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ (𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢))) → ran 𝑔 ∈ Fin)
9244cnfldtopon 22496 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
9392toponunii 20647 . . . . . . . . . . . 12 ℂ = (TopOpen‘ℂfld)
9493rintopn 20639 . . . . . . . . . . 11 (((TopOpen‘ℂfld) ∈ Top ∧ ran 𝑔 ⊆ (TopOpen‘ℂfld) ∧ ran 𝑔 ∈ Fin) → (ℂ ∩ ran 𝑔) ∈ (TopOpen‘ℂfld))
9582, 84, 91, 94syl3anc 1323 . . . . . . . . . 10 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ (𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢))) → (ℂ ∩ ran 𝑔) ∈ (TopOpen‘ℂfld))
9642adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) → 𝐶 ∈ ℂ)
9796ad2antrr 761 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ (𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢))) → 𝐶 ∈ ℂ)
98 simpl 473 . . . . . . . . . . . . . 14 ((𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢) → 𝐶 ∈ (𝑔𝑥))
9998ralimi 2947 . . . . . . . . . . . . 13 (∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢) → ∀𝑥𝐴 𝐶 ∈ (𝑔𝑥))
10099ad2antll 764 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ (𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢))) → ∀𝑥𝐴 𝐶 ∈ (𝑔𝑥))
101 eleq2 2687 . . . . . . . . . . . . . 14 (𝑧 = (𝑔𝑥) → (𝐶𝑧𝐶 ∈ (𝑔𝑥)))
102101ralrn 6318 . . . . . . . . . . . . 13 (𝑔 Fn 𝐴 → (∀𝑧 ∈ ran 𝑔 𝐶𝑧 ↔ ∀𝑥𝐴 𝐶 ∈ (𝑔𝑥)))
10387, 102syl 17 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ (𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢))) → (∀𝑧 ∈ ran 𝑔 𝐶𝑧 ↔ ∀𝑥𝐴 𝐶 ∈ (𝑔𝑥)))
104100, 103mpbird 247 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ (𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢))) → ∀𝑧 ∈ ran 𝑔 𝐶𝑧)
105 elrint 4483 . . . . . . . . . . 11 (𝐶 ∈ (ℂ ∩ ran 𝑔) ↔ (𝐶 ∈ ℂ ∧ ∀𝑧 ∈ ran 𝑔 𝐶𝑧))
10697, 104, 105sylanbrc 697 . . . . . . . . . 10 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ (𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢))) → 𝐶 ∈ (ℂ ∩ ran 𝑔))
107 indifcom 3848 . . . . . . . . . . . . . 14 ((ℂ ∩ ran 𝑔) ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶})) = ( 𝑥𝐴 𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶}))
108 iunin1 4551 . . . . . . . . . . . . . 14 𝑥𝐴 (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶})) = ( 𝑥𝐴 𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶}))
109107, 108eqtr4i 2646 . . . . . . . . . . . . 13 ((ℂ ∩ ran 𝑔) ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶})) = 𝑥𝐴 (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶}))
110109imaeq2i 5423 . . . . . . . . . . . 12 (𝐹 “ ((ℂ ∩ ran 𝑔) ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶}))) = (𝐹 𝑥𝐴 (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶})))
111 imaiun 6457 . . . . . . . . . . . 12 (𝐹 𝑥𝐴 (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶}))) = 𝑥𝐴 (𝐹 “ (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶})))
112110, 111eqtri 2643 . . . . . . . . . . 11 (𝐹 “ ((ℂ ∩ ran 𝑔) ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶}))) = 𝑥𝐴 (𝐹 “ (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶})))
113 inss2 3812 . . . . . . . . . . . . . . . . . . . . 21 (ℂ ∩ ran 𝑔) ⊆ ran 𝑔
114 fnfvelrn 6312 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑔 Fn 𝐴𝑥𝐴) → (𝑔𝑥) ∈ ran 𝑔)
11586, 114sylan 488 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ 𝑥𝐴) → (𝑔𝑥) ∈ ran 𝑔)
116 intss1 4457 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑔𝑥) ∈ ran 𝑔 ran 𝑔 ⊆ (𝑔𝑥))
117115, 116syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ 𝑥𝐴) → ran 𝑔 ⊆ (𝑔𝑥))
118113, 117syl5ss 3594 . . . . . . . . . . . . . . . . . . . 20 ((𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ 𝑥𝐴) → (ℂ ∩ ran 𝑔) ⊆ (𝑔𝑥))
119118ssdifd 3724 . . . . . . . . . . . . . . . . . . 19 ((𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ 𝑥𝐴) → ((ℂ ∩ ran 𝑔) ∖ {𝐶}) ⊆ ((𝑔𝑥) ∖ {𝐶}))
120 sslin 3817 . . . . . . . . . . . . . . . . . . 19 (((ℂ ∩ ran 𝑔) ∖ {𝐶}) ⊆ ((𝑔𝑥) ∖ {𝐶}) → (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶})) ⊆ (𝐵 ∩ ((𝑔𝑥) ∖ {𝐶})))
121 imass2 5460 . . . . . . . . . . . . . . . . . . 19 ((𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶})) ⊆ (𝐵 ∩ ((𝑔𝑥) ∖ {𝐶})) → (𝐹 “ (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶}))) ⊆ (𝐹 “ (𝐵 ∩ ((𝑔𝑥) ∖ {𝐶}))))
122119, 120, 1213syl 18 . . . . . . . . . . . . . . . . . 18 ((𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ 𝑥𝐴) → (𝐹 “ (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶}))) ⊆ (𝐹 “ (𝐵 ∩ ((𝑔𝑥) ∖ {𝐶}))))
123 indifcom 3848 . . . . . . . . . . . . . . . . . . . 20 ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶})) = (𝐵 ∩ ((𝑔𝑥) ∖ {𝐶}))
124123imaeq2i 5423 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) = ((𝐹𝐵) “ (𝐵 ∩ ((𝑔𝑥) ∖ {𝐶})))
125 inss1 3811 . . . . . . . . . . . . . . . . . . . 20 (𝐵 ∩ ((𝑔𝑥) ∖ {𝐶})) ⊆ 𝐵
126 resima2 5391 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∩ ((𝑔𝑥) ∖ {𝐶})) ⊆ 𝐵 → ((𝐹𝐵) “ (𝐵 ∩ ((𝑔𝑥) ∖ {𝐶}))) = (𝐹 “ (𝐵 ∩ ((𝑔𝑥) ∖ {𝐶}))))
127125, 126ax-mp 5 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝐵) “ (𝐵 ∩ ((𝑔𝑥) ∖ {𝐶}))) = (𝐹 “ (𝐵 ∩ ((𝑔𝑥) ∖ {𝐶})))
128124, 127eqtri 2643 . . . . . . . . . . . . . . . . . 18 ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) = (𝐹 “ (𝐵 ∩ ((𝑔𝑥) ∖ {𝐶})))
129122, 128syl6sseqr 3631 . . . . . . . . . . . . . . . . 17 ((𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ 𝑥𝐴) → (𝐹 “ (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶}))) ⊆ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))))
130 sstr2 3590 . . . . . . . . . . . . . . . . 17 ((𝐹 “ (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶}))) ⊆ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) → (((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢 → (𝐹 “ (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶}))) ⊆ 𝑢))
131129, 130syl 17 . . . . . . . . . . . . . . . 16 ((𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ 𝑥𝐴) → (((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢 → (𝐹 “ (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶}))) ⊆ 𝑢))
132131adantld 483 . . . . . . . . . . . . . . 15 ((𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ 𝑥𝐴) → ((𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢) → (𝐹 “ (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶}))) ⊆ 𝑢))
133132ralimdva 2956 . . . . . . . . . . . . . 14 (𝑔:𝐴⟶(TopOpen‘ℂfld) → (∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢) → ∀𝑥𝐴 (𝐹 “ (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶}))) ⊆ 𝑢))
134133imp 445 . . . . . . . . . . . . 13 ((𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢)) → ∀𝑥𝐴 (𝐹 “ (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶}))) ⊆ 𝑢)
135134adantl 482 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ (𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢))) → ∀𝑥𝐴 (𝐹 “ (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶}))) ⊆ 𝑢)
136 iunss 4527 . . . . . . . . . . . 12 ( 𝑥𝐴 (𝐹 “ (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶}))) ⊆ 𝑢 ↔ ∀𝑥𝐴 (𝐹 “ (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶}))) ⊆ 𝑢)
137135, 136sylibr 224 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ (𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢))) → 𝑥𝐴 (𝐹 “ (𝐵 ∩ ((ℂ ∩ ran 𝑔) ∖ {𝐶}))) ⊆ 𝑢)
138112, 137syl5eqss 3628 . . . . . . . . . 10 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ (𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢))) → (𝐹 “ ((ℂ ∩ ran 𝑔) ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶}))) ⊆ 𝑢)
139 eleq2 2687 . . . . . . . . . . . 12 (𝑣 = (ℂ ∩ ran 𝑔) → (𝐶𝑣𝐶 ∈ (ℂ ∩ ran 𝑔)))
140 ineq1 3785 . . . . . . . . . . . . . 14 (𝑣 = (ℂ ∩ ran 𝑔) → (𝑣 ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶})) = ((ℂ ∩ ran 𝑔) ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶})))
141140imaeq2d 5425 . . . . . . . . . . . . 13 (𝑣 = (ℂ ∩ ran 𝑔) → (𝐹 “ (𝑣 ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶}))) = (𝐹 “ ((ℂ ∩ ran 𝑔) ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶}))))
142141sseq1d 3611 . . . . . . . . . . . 12 (𝑣 = (ℂ ∩ ran 𝑔) → ((𝐹 “ (𝑣 ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶}))) ⊆ 𝑢 ↔ (𝐹 “ ((ℂ ∩ ran 𝑔) ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶}))) ⊆ 𝑢))
143139, 142anbi12d 746 . . . . . . . . . . 11 (𝑣 = (ℂ ∩ ran 𝑔) → ((𝐶𝑣 ∧ (𝐹 “ (𝑣 ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶}))) ⊆ 𝑢) ↔ (𝐶 ∈ (ℂ ∩ ran 𝑔) ∧ (𝐹 “ ((ℂ ∩ ran 𝑔) ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶}))) ⊆ 𝑢)))
144143rspcev 3295 . . . . . . . . . 10 (((ℂ ∩ ran 𝑔) ∈ (TopOpen‘ℂfld) ∧ (𝐶 ∈ (ℂ ∩ ran 𝑔) ∧ (𝐹 “ ((ℂ ∩ ran 𝑔) ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶}))) ⊆ 𝑢)) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐶𝑣 ∧ (𝐹 “ (𝑣 ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶}))) ⊆ 𝑢))
14595, 106, 138, 144syl12anc 1321 . . . . . . . . 9 ((((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) ∧ (𝑔:𝐴⟶(TopOpen‘ℂfld) ∧ ∀𝑥𝐴 (𝐶 ∈ (𝑔𝑥) ∧ ((𝐹𝐵) “ ((𝑔𝑥) ∩ (𝐵 ∖ {𝐶}))) ⊆ 𝑢))) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐶𝑣 ∧ (𝐹 “ (𝑣 ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶}))) ⊆ 𝑢))
14680, 145exlimddv 1860 . . . . . . . 8 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ (𝑢 ∈ (TopOpen‘ℂfld) ∧ 𝑦𝑢)) → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐶𝑣 ∧ (𝐹 “ (𝑣 ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶}))) ⊆ 𝑢))
147146expr 642 . . . . . . 7 (((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) ∧ 𝑢 ∈ (TopOpen‘ℂfld)) → (𝑦𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐶𝑣 ∧ (𝐹 “ (𝑣 ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶}))) ⊆ 𝑢)))
148147ralrimiva 2960 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) → ∀𝑢 ∈ (TopOpen‘ℂfld)(𝑦𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐶𝑣 ∧ (𝐹 “ (𝑣 ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶}))) ⊆ 𝑢)))
14926adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) → 𝐹: 𝑥𝐴 𝐵⟶ℂ)
150 iunss 4527 . . . . . . . . 9 ( 𝑥𝐴 𝐵 ⊆ ℂ ↔ ∀𝑥𝐴 𝐵 ⊆ ℂ)
15135, 150sylibr 224 . . . . . . . 8 (𝜑 𝑥𝐴 𝐵 ⊆ ℂ)
152151adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) → 𝑥𝐴 𝐵 ⊆ ℂ)
153149, 152, 96, 44ellimc2 23547 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) → (𝑦 ∈ (𝐹 lim 𝐶) ↔ (𝑦 ∈ ℂ ∧ ∀𝑢 ∈ (TopOpen‘ℂfld)(𝑦𝑢 → ∃𝑣 ∈ (TopOpen‘ℂfld)(𝐶𝑣 ∧ (𝐹 “ (𝑣 ∩ ( 𝑥𝐴 𝐵 ∖ {𝐶}))) ⊆ 𝑢)))))
1549, 148, 153mpbir2and 956 . . . . 5 ((𝜑 ∧ (𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶))) → 𝑦 ∈ (𝐹 lim 𝐶))
155154ex 450 . . . 4 (𝜑 → ((𝑦 ∈ ℂ ∧ ∀𝑥𝐴 𝑦 ∈ ((𝐹𝐵) lim 𝐶)) → 𝑦 ∈ (𝐹 lim 𝐶)))
1568, 155syl5bi 232 . . 3 (𝜑 → (𝑦 ∈ (ℂ ∩ 𝑥𝐴 ((𝐹𝐵) lim 𝐶)) → 𝑦 ∈ (𝐹 lim 𝐶)))
157156ssrdv 3589 . 2 (𝜑 → (ℂ ∩ 𝑥𝐴 ((𝐹𝐵) lim 𝐶)) ⊆ (𝐹 lim 𝐶))
1587, 157eqssd 3600 1 (𝜑 → (𝐹 lim 𝐶) = (ℂ ∩ 𝑥𝐴 ((𝐹𝐵) lim 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wex 1701  wcel 1987  wral 2907  wrex 2908  csb 3514  cdif 3552  cin 3554  wss 3555  {csn 4148   cint 4440   ciun 4485   ciin 4486  ran crn 5075  cres 5076  cima 5077   Fn wfn 5842  wf 5843  ontowfo 5845  cfv 5847  (class class class)co 6604  Fincfn 7899  cc 9878  TopOpenctopn 16003  fldccnfld 19665  Topctop 20617   lim climc 23532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-pm 7805  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fi 8261  df-sup 8292  df-inf 8293  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-fz 12269  df-seq 12742  df-exp 12801  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-plusg 15875  df-mulr 15876  df-starv 15877  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-rest 16004  df-topn 16005  df-topgen 16025  df-psmet 19657  df-xmet 19658  df-met 19659  df-bl 19660  df-mopn 19661  df-cnfld 19666  df-top 20621  df-bases 20622  df-topon 20623  df-topsp 20624  df-cnp 20942  df-xms 22035  df-ms 22036  df-limc 23536
This theorem is referenced by:  limcun  23565
  Copyright terms: Public domain W3C validator