MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssnlim Structured version   Visualization version   GIF version

Theorem ssnlim 6953
Description: An ordinal subclass of non-limit ordinals is a class of natural numbers. Exercise 7 of [TakeutiZaring] p. 42. (Contributed by NM, 2-Nov-2004.)
Assertion
Ref Expression
ssnlim ((Ord 𝐴𝐴 ⊆ {𝑥 ∈ On ∣ ¬ Lim 𝑥}) → 𝐴 ⊆ ω)
Distinct variable group:   𝑥,𝐴

Proof of Theorem ssnlim
StepHypRef Expression
1 limom 6950 . . . 4 Lim ω
2 ssel 3561 . . . . 5 (𝐴 ⊆ {𝑥 ∈ On ∣ ¬ Lim 𝑥} → (ω ∈ 𝐴 → ω ∈ {𝑥 ∈ On ∣ ¬ Lim 𝑥}))
3 limeq 5638 . . . . . . . 8 (𝑥 = ω → (Lim 𝑥 ↔ Lim ω))
43notbid 306 . . . . . . 7 (𝑥 = ω → (¬ Lim 𝑥 ↔ ¬ Lim ω))
54elrab 3330 . . . . . 6 (ω ∈ {𝑥 ∈ On ∣ ¬ Lim 𝑥} ↔ (ω ∈ On ∧ ¬ Lim ω))
65simprbi 478 . . . . 5 (ω ∈ {𝑥 ∈ On ∣ ¬ Lim 𝑥} → ¬ Lim ω)
72, 6syl6 34 . . . 4 (𝐴 ⊆ {𝑥 ∈ On ∣ ¬ Lim 𝑥} → (ω ∈ 𝐴 → ¬ Lim ω))
81, 7mt2i 130 . . 3 (𝐴 ⊆ {𝑥 ∈ On ∣ ¬ Lim 𝑥} → ¬ ω ∈ 𝐴)
98adantl 480 . 2 ((Ord 𝐴𝐴 ⊆ {𝑥 ∈ On ∣ ¬ Lim 𝑥}) → ¬ ω ∈ 𝐴)
10 ordom 6944 . . . 4 Ord ω
11 ordtri1 5659 . . . 4 ((Ord 𝐴 ∧ Ord ω) → (𝐴 ⊆ ω ↔ ¬ ω ∈ 𝐴))
1210, 11mpan2 702 . . 3 (Ord 𝐴 → (𝐴 ⊆ ω ↔ ¬ ω ∈ 𝐴))
1312adantr 479 . 2 ((Ord 𝐴𝐴 ⊆ {𝑥 ∈ On ∣ ¬ Lim 𝑥}) → (𝐴 ⊆ ω ↔ ¬ ω ∈ 𝐴))
149, 13mpbird 245 1 ((Ord 𝐴𝐴 ⊆ {𝑥 ∈ On ∣ ¬ Lim 𝑥}) → 𝐴 ⊆ ω)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wa 382   = wceq 1474  wcel 1976  {crab 2899  wss 3539  Ord word 5625  Oncon0 5626  Lim wlim 5627  ωcom 6935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pr 4828  ax-un 6825
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-ral 2900  df-rex 2901  df-rab 2904  df-v 3174  df-sbc 3402  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-br 4578  df-opab 4638  df-tr 4675  df-eprel 4939  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-om 6936
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator