MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssonunii Structured version   Visualization version   GIF version

Theorem ssonunii 6852
Description: The union of a set of ordinal numbers is an ordinal number. Corollary 7N(d) of [Enderton] p. 193. (Contributed by NM, 20-Sep-2003.)
Hypothesis
Ref Expression
ssonuni.1 𝐴 ∈ V
Assertion
Ref Expression
ssonunii (𝐴 ⊆ On → 𝐴 ∈ On)

Proof of Theorem ssonunii
StepHypRef Expression
1 ssonuni.1 . 2 𝐴 ∈ V
2 ssonuni 6851 . 2 (𝐴 ∈ V → (𝐴 ⊆ On → 𝐴 ∈ On))
31, 2ax-mp 5 1 (𝐴 ⊆ On → 𝐴 ∈ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 1975  Vcvv 3168  wss 3535   cuni 4362  Oncon0 5622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-sep 4699  ax-nul 4708  ax-pr 4824  ax-un 6820
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-ral 2896  df-rex 2897  df-rab 2900  df-v 3170  df-sbc 3398  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-pss 3551  df-nul 3870  df-if 4032  df-sn 4121  df-pr 4123  df-tp 4125  df-op 4127  df-uni 4363  df-br 4574  df-opab 4634  df-tr 4671  df-eprel 4935  df-po 4945  df-so 4946  df-fr 4983  df-we 4985  df-ord 5625  df-on 5626
This theorem is referenced by:  bm2.5ii  6871  tz9.12lem2  8507  ttukeylem6  9192
  Copyright terms: Public domain W3C validator