Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttukeylem6 Structured version   Visualization version   GIF version

Theorem ttukeylem6 9374
 Description: Lemma for ttukey 9378. (Contributed by Mario Carneiro, 15-May-2015.)
Hypotheses
Ref Expression
ttukeylem.1 (𝜑𝐹:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵))
ttukeylem.2 (𝜑𝐵𝐴)
ttukeylem.3 (𝜑 → ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴))
ttukeylem.4 𝐺 = recs((𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅)))))
Assertion
Ref Expression
ttukeylem6 ((𝜑𝐶 ∈ suc (card‘( 𝐴𝐵))) → (𝐺𝐶) ∈ 𝐴)
Distinct variable groups:   𝑥,𝑧,𝐶   𝑥,𝐺,𝑧   𝜑,𝑧   𝑥,𝐴,𝑧   𝑥,𝐵,𝑧   𝑥,𝐹,𝑧
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ttukeylem6
Dummy variables 𝑎 𝑦 𝑓 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cardon 8808 . . . . 5 (card‘( 𝐴𝐵)) ∈ On
21onsuci 7080 . . . 4 suc (card‘( 𝐴𝐵)) ∈ On
32a1i 11 . . 3 (𝜑 → suc (card‘( 𝐴𝐵)) ∈ On)
4 onelon 5786 . . 3 ((suc (card‘( 𝐴𝐵)) ∈ On ∧ 𝐶 ∈ suc (card‘( 𝐴𝐵))) → 𝐶 ∈ On)
53, 4sylan 487 . 2 ((𝜑𝐶 ∈ suc (card‘( 𝐴𝐵))) → 𝐶 ∈ On)
6 eleq1 2718 . . . . . 6 (𝑦 = 𝑎 → (𝑦 ∈ suc (card‘( 𝐴𝐵)) ↔ 𝑎 ∈ suc (card‘( 𝐴𝐵))))
7 fveq2 6229 . . . . . . 7 (𝑦 = 𝑎 → (𝐺𝑦) = (𝐺𝑎))
87eleq1d 2715 . . . . . 6 (𝑦 = 𝑎 → ((𝐺𝑦) ∈ 𝐴 ↔ (𝐺𝑎) ∈ 𝐴))
96, 8imbi12d 333 . . . . 5 (𝑦 = 𝑎 → ((𝑦 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑦) ∈ 𝐴) ↔ (𝑎 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑎) ∈ 𝐴)))
109imbi2d 329 . . . 4 (𝑦 = 𝑎 → ((𝜑 → (𝑦 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑦) ∈ 𝐴)) ↔ (𝜑 → (𝑎 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑎) ∈ 𝐴))))
11 eleq1 2718 . . . . . 6 (𝑦 = 𝐶 → (𝑦 ∈ suc (card‘( 𝐴𝐵)) ↔ 𝐶 ∈ suc (card‘( 𝐴𝐵))))
12 fveq2 6229 . . . . . . 7 (𝑦 = 𝐶 → (𝐺𝑦) = (𝐺𝐶))
1312eleq1d 2715 . . . . . 6 (𝑦 = 𝐶 → ((𝐺𝑦) ∈ 𝐴 ↔ (𝐺𝐶) ∈ 𝐴))
1411, 13imbi12d 333 . . . . 5 (𝑦 = 𝐶 → ((𝑦 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑦) ∈ 𝐴) ↔ (𝐶 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝐶) ∈ 𝐴)))
1514imbi2d 329 . . . 4 (𝑦 = 𝐶 → ((𝜑 → (𝑦 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑦) ∈ 𝐴)) ↔ (𝜑 → (𝐶 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝐶) ∈ 𝐴))))
16 r19.21v 2989 . . . . . 6 (∀𝑎𝑦 (𝜑 → (𝑎 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑎) ∈ 𝐴)) ↔ (𝜑 → ∀𝑎𝑦 (𝑎 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑎) ∈ 𝐴)))
172onordi 5870 . . . . . . . . . . . . . . 15 Ord suc (card‘( 𝐴𝐵))
1817a1i 11 . . . . . . . . . . . . . 14 (𝜑 → Ord suc (card‘( 𝐴𝐵)))
19 ordelss 5777 . . . . . . . . . . . . . 14 ((Ord suc (card‘( 𝐴𝐵)) ∧ 𝑦 ∈ suc (card‘( 𝐴𝐵))) → 𝑦 ⊆ suc (card‘( 𝐴𝐵)))
2018, 19sylan 487 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ suc (card‘( 𝐴𝐵))) → 𝑦 ⊆ suc (card‘( 𝐴𝐵)))
2120sselda 3636 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ suc (card‘( 𝐴𝐵))) ∧ 𝑎𝑦) → 𝑎 ∈ suc (card‘( 𝐴𝐵)))
22 biimt 349 . . . . . . . . . . . 12 (𝑎 ∈ suc (card‘( 𝐴𝐵)) → ((𝐺𝑎) ∈ 𝐴 ↔ (𝑎 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑎) ∈ 𝐴)))
2321, 22syl 17 . . . . . . . . . . 11 (((𝜑𝑦 ∈ suc (card‘( 𝐴𝐵))) ∧ 𝑎𝑦) → ((𝐺𝑎) ∈ 𝐴 ↔ (𝑎 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑎) ∈ 𝐴)))
2423ralbidva 3014 . . . . . . . . . 10 ((𝜑𝑦 ∈ suc (card‘( 𝐴𝐵))) → (∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴 ↔ ∀𝑎𝑦 (𝑎 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑎) ∈ 𝐴)))
252onssi 7079 . . . . . . . . . . . . . 14 suc (card‘( 𝐴𝐵)) ⊆ On
26 simprl 809 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) → 𝑦 ∈ suc (card‘( 𝐴𝐵)))
2725, 26sseldi 3634 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) → 𝑦 ∈ On)
28 ttukeylem.1 . . . . . . . . . . . . . 14 (𝜑𝐹:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵))
29 ttukeylem.2 . . . . . . . . . . . . . 14 (𝜑𝐵𝐴)
30 ttukeylem.3 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴))
31 ttukeylem.4 . . . . . . . . . . . . . 14 𝐺 = recs((𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅)))))
3228, 29, 30, 31ttukeylem3 9371 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ On) → (𝐺𝑦) = if(𝑦 = 𝑦, if(𝑦 = ∅, 𝐵, (𝐺𝑦)), ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅))))
3327, 32syldan 486 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) → (𝐺𝑦) = if(𝑦 = 𝑦, if(𝑦 = ∅, 𝐵, (𝐺𝑦)), ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅))))
3429ad3antrrr 766 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑦 = ∅) → 𝐵𝐴)
35 inss2 3867 . . . . . . . . . . . . . . . . . . . . 21 (𝒫 (𝐺𝑦) ∩ Fin) ⊆ Fin
36 simpr 476 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) → 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin))
3735, 36sseldi 3634 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) → 𝑤 ∈ Fin)
38 inss1 3866 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝒫 (𝐺𝑦) ∩ Fin) ⊆ 𝒫 (𝐺𝑦)
3938, 36sseldi 3634 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) → 𝑤 ∈ 𝒫 (𝐺𝑦))
4039elpwid 4203 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) → 𝑤 (𝐺𝑦))
4131tfr1 7538 . . . . . . . . . . . . . . . . . . . . . . 23 𝐺 Fn On
42 fnfun 6026 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐺 Fn On → Fun 𝐺)
43 funiunfv 6546 . . . . . . . . . . . . . . . . . . . . . . 23 (Fun 𝐺 𝑣𝑦 (𝐺𝑣) = (𝐺𝑦))
4441, 42, 43mp2b 10 . . . . . . . . . . . . . . . . . . . . . 22 𝑣𝑦 (𝐺𝑣) = (𝐺𝑦)
4540, 44syl6sseqr 3685 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) → 𝑤 𝑣𝑦 (𝐺𝑣))
46 dfss3 3625 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 𝑣𝑦 (𝐺𝑣) ↔ ∀𝑢𝑤 𝑢 𝑣𝑦 (𝐺𝑣))
47 eliun 4556 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢 𝑣𝑦 (𝐺𝑣) ↔ ∃𝑣𝑦 𝑢 ∈ (𝐺𝑣))
4847ralbii 3009 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑢𝑤 𝑢 𝑣𝑦 (𝐺𝑣) ↔ ∀𝑢𝑤𝑣𝑦 𝑢 ∈ (𝐺𝑣))
4946, 48bitri 264 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 𝑣𝑦 (𝐺𝑣) ↔ ∀𝑢𝑤𝑣𝑦 𝑢 ∈ (𝐺𝑣))
5045, 49sylib 208 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) → ∀𝑢𝑤𝑣𝑦 𝑢 ∈ (𝐺𝑣))
51 fveq2 6229 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣 = (𝑓𝑢) → (𝐺𝑣) = (𝐺‘(𝑓𝑢)))
5251eleq2d 2716 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 = (𝑓𝑢) → (𝑢 ∈ (𝐺𝑣) ↔ 𝑢 ∈ (𝐺‘(𝑓𝑢))))
5352ac6sfi 8245 . . . . . . . . . . . . . . . . . . . 20 ((𝑤 ∈ Fin ∧ ∀𝑢𝑤𝑣𝑦 𝑢 ∈ (𝐺𝑣)) → ∃𝑓(𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))
5437, 50, 53syl2anc 694 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) → ∃𝑓(𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))
55 eleq1 2718 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 = ∅ → (𝑤𝐴 ↔ ∅ ∈ 𝐴))
56 simp-4l 823 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → 𝜑)
57 simprrl 821 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) → 𝑓:𝑤𝑦)
5857adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → 𝑓:𝑤𝑦)
59 frn 6091 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑓:𝑤𝑦 → ran 𝑓𝑦)
6058, 59syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → ran 𝑓𝑦)
6127ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → 𝑦 ∈ On)
62 onss 7032 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 ∈ On → 𝑦 ⊆ On)
6361, 62syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → 𝑦 ⊆ On)
6460, 63sstrd 3646 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → ran 𝑓 ⊆ On)
6537adantrr 753 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) → 𝑤 ∈ Fin)
6665adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → 𝑤 ∈ Fin)
67 ffn 6083 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑓:𝑤𝑦𝑓 Fn 𝑤)
6858, 67syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → 𝑓 Fn 𝑤)
69 dffn4 6159 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑓 Fn 𝑤𝑓:𝑤onto→ran 𝑓)
7068, 69sylib 208 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → 𝑓:𝑤onto→ran 𝑓)
71 fofi 8293 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑤 ∈ Fin ∧ 𝑓:𝑤onto→ran 𝑓) → ran 𝑓 ∈ Fin)
7266, 70, 71syl2anc 694 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → ran 𝑓 ∈ Fin)
73 dm0rn0 5374 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (dom 𝑓 = ∅ ↔ ran 𝑓 = ∅)
74 fdm 6089 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑓:𝑤𝑦 → dom 𝑓 = 𝑤)
7557, 74syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) → dom 𝑓 = 𝑤)
7675eqeq1d 2653 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) → (dom 𝑓 = ∅ ↔ 𝑤 = ∅))
7773, 76syl5bbr 274 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) → (ran 𝑓 = ∅ ↔ 𝑤 = ∅))
7877necon3bid 2867 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) → (ran 𝑓 ≠ ∅ ↔ 𝑤 ≠ ∅))
7978biimpar 501 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → ran 𝑓 ≠ ∅)
80 ordunifi 8251 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((ran 𝑓 ⊆ On ∧ ran 𝑓 ∈ Fin ∧ ran 𝑓 ≠ ∅) → ran 𝑓 ∈ ran 𝑓)
8164, 72, 79, 80syl3anc 1366 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → ran 𝑓 ∈ ran 𝑓)
8260, 81sseldd 3637 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → ran 𝑓𝑦)
83 simplrr 818 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) → ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)
8483ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)
85 fveq2 6229 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎 = ran 𝑓 → (𝐺𝑎) = (𝐺 ran 𝑓))
8685eleq1d 2715 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 = ran 𝑓 → ((𝐺𝑎) ∈ 𝐴 ↔ (𝐺 ran 𝑓) ∈ 𝐴))
8786rspcv 3336 . . . . . . . . . . . . . . . . . . . . . . . 24 ( ran 𝑓𝑦 → (∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴 → (𝐺 ran 𝑓) ∈ 𝐴))
8882, 84, 87sylc 65 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → (𝐺 ran 𝑓) ∈ 𝐴)
89 simp-4l 823 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) ∧ (𝑓:𝑤𝑦𝑢𝑤)) → 𝜑)
9027ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) ∧ (𝑓:𝑤𝑦𝑢𝑤)) → 𝑦 ∈ On)
9190, 62syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) ∧ (𝑓:𝑤𝑦𝑢𝑤)) → 𝑦 ⊆ On)
92 ffvelrn 6397 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑓:𝑤𝑦𝑢𝑤) → (𝑓𝑢) ∈ 𝑦)
9392adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) ∧ (𝑓:𝑤𝑦𝑢𝑤)) → (𝑓𝑢) ∈ 𝑦)
9491, 93sseldd 3637 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) ∧ (𝑓:𝑤𝑦𝑢𝑤)) → (𝑓𝑢) ∈ On)
9559ad2antrl 764 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) ∧ (𝑓:𝑤𝑦𝑢𝑤)) → ran 𝑓𝑦)
9695, 91sstrd 3646 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) ∧ (𝑓:𝑤𝑦𝑢𝑤)) → ran 𝑓 ⊆ On)
97 vex 3234 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 𝑓 ∈ V
9897rnex 7142 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ran 𝑓 ∈ V
9998ssonunii 7029 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (ran 𝑓 ⊆ On → ran 𝑓 ∈ On)
10096, 99syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) ∧ (𝑓:𝑤𝑦𝑢𝑤)) → ran 𝑓 ∈ On)
10167ad2antrl 764 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) ∧ (𝑓:𝑤𝑦𝑢𝑤)) → 𝑓 Fn 𝑤)
102 simprr 811 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) ∧ (𝑓:𝑤𝑦𝑢𝑤)) → 𝑢𝑤)
103 fnfvelrn 6396 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑓 Fn 𝑤𝑢𝑤) → (𝑓𝑢) ∈ ran 𝑓)
104101, 102, 103syl2anc 694 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) ∧ (𝑓:𝑤𝑦𝑢𝑤)) → (𝑓𝑢) ∈ ran 𝑓)
105 elssuni 4499 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝑓𝑢) ∈ ran 𝑓 → (𝑓𝑢) ⊆ ran 𝑓)
106104, 105syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) ∧ (𝑓:𝑤𝑦𝑢𝑤)) → (𝑓𝑢) ⊆ ran 𝑓)
10728, 29, 30, 31ttukeylem5 9373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑 ∧ ((𝑓𝑢) ∈ On ∧ ran 𝑓 ∈ On ∧ (𝑓𝑢) ⊆ ran 𝑓)) → (𝐺‘(𝑓𝑢)) ⊆ (𝐺 ran 𝑓))
10889, 94, 100, 106, 107syl13anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) ∧ (𝑓:𝑤𝑦𝑢𝑤)) → (𝐺‘(𝑓𝑢)) ⊆ (𝐺 ran 𝑓))
109108sseld 3635 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) ∧ (𝑓:𝑤𝑦𝑢𝑤)) → (𝑢 ∈ (𝐺‘(𝑓𝑢)) → 𝑢 ∈ (𝐺 ran 𝑓)))
110109anassrs 681 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) ∧ 𝑓:𝑤𝑦) ∧ 𝑢𝑤) → (𝑢 ∈ (𝐺‘(𝑓𝑢)) → 𝑢 ∈ (𝐺 ran 𝑓)))
111110ralimdva 2991 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) ∧ 𝑓:𝑤𝑦) → (∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢)) → ∀𝑢𝑤 𝑢 ∈ (𝐺 ran 𝑓)))
112111expimpd 628 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) → ((𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))) → ∀𝑢𝑤 𝑢 ∈ (𝐺 ran 𝑓)))
113112impr 648 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) → ∀𝑢𝑤 𝑢 ∈ (𝐺 ran 𝑓))
114113adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → ∀𝑢𝑤 𝑢 ∈ (𝐺 ran 𝑓))
115 dfss3 3625 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 ⊆ (𝐺 ran 𝑓) ↔ ∀𝑢𝑤 𝑢 ∈ (𝐺 ran 𝑓))
116114, 115sylibr 224 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → 𝑤 ⊆ (𝐺 ran 𝑓))
11728, 29, 30ttukeylem2 9370 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ ((𝐺 ran 𝑓) ∈ 𝐴𝑤 ⊆ (𝐺 ran 𝑓))) → 𝑤𝐴)
11856, 88, 116, 117syl12anc 1364 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) ∧ 𝑤 ≠ ∅) → 𝑤𝐴)
119 0ss 4005 . . . . . . . . . . . . . . . . . . . . . . . . 25 ∅ ⊆ 𝐵
12028, 29, 30ttukeylem2 9370 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝐵𝐴 ∧ ∅ ⊆ 𝐵)) → ∅ ∈ 𝐴)
121119, 120mpanr2 720 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝐵𝐴) → ∅ ∈ 𝐴)
12229, 121mpdan 703 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ∅ ∈ 𝐴)
123122ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) → ∅ ∈ 𝐴)
12455, 118, 123pm2.61ne 2908 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) ∧ (𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))))) → 𝑤𝐴)
125124expr 642 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) → ((𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))) → 𝑤𝐴))
126125exlimdv 1901 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) → (∃𝑓(𝑓:𝑤𝑦 ∧ ∀𝑢𝑤 𝑢 ∈ (𝐺‘(𝑓𝑢))) → 𝑤𝐴))
12754, 126mpd 15 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ 𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin)) → 𝑤𝐴)
128127ex 449 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) → (𝑤 ∈ (𝒫 (𝐺𝑦) ∩ Fin) → 𝑤𝐴))
129128ssrdv 3642 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) → (𝒫 (𝐺𝑦) ∩ Fin) ⊆ 𝐴)
13028, 29, 30ttukeylem1 9369 . . . . . . . . . . . . . . . . 17 (𝜑 → ( (𝐺𝑦) ∈ 𝐴 ↔ (𝒫 (𝐺𝑦) ∩ Fin) ⊆ 𝐴))
131130ad2antrr 762 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) → ( (𝐺𝑦) ∈ 𝐴 ↔ (𝒫 (𝐺𝑦) ∩ Fin) ⊆ 𝐴))
132129, 131mpbird 247 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) → (𝐺𝑦) ∈ 𝐴)
133132adantr 480 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) ∧ ¬ 𝑦 = ∅) → (𝐺𝑦) ∈ 𝐴)
13434, 133ifclda 4153 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ 𝑦 = 𝑦) → if(𝑦 = ∅, 𝐵, (𝐺𝑦)) ∈ 𝐴)
135 uneq2 3794 . . . . . . . . . . . . . . 15 ({(𝐹 𝑦)} = if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅) → ((𝐺 𝑦) ∪ {(𝐹 𝑦)}) = ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅)))
136135eleq1d 2715 . . . . . . . . . . . . . 14 ({(𝐹 𝑦)} = if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅) → (((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴 ↔ ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅)) ∈ 𝐴))
137 un0 4000 . . . . . . . . . . . . . . . 16 ((𝐺 𝑦) ∪ ∅) = (𝐺 𝑦)
138 uneq2 3794 . . . . . . . . . . . . . . . 16 (∅ = if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅) → ((𝐺 𝑦) ∪ ∅) = ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅)))
139137, 138syl5eqr 2699 . . . . . . . . . . . . . . 15 (∅ = if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅) → (𝐺 𝑦) = ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅)))
140139eleq1d 2715 . . . . . . . . . . . . . 14 (∅ = if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅) → ((𝐺 𝑦) ∈ 𝐴 ↔ ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅)) ∈ 𝐴))
141 simpr 476 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ ¬ 𝑦 = 𝑦) ∧ ((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴) → ((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴)
142 vuniex 6996 . . . . . . . . . . . . . . . . . 18 𝑦 ∈ V
143142sucid 5842 . . . . . . . . . . . . . . . . 17 𝑦 ∈ suc 𝑦
144 eloni 5771 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ On → Ord 𝑦)
145 orduniorsuc 7072 . . . . . . . . . . . . . . . . . . 19 (Ord 𝑦 → (𝑦 = 𝑦𝑦 = suc 𝑦))
14627, 144, 1453syl 18 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) → (𝑦 = 𝑦𝑦 = suc 𝑦))
147146orcanai 972 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ ¬ 𝑦 = 𝑦) → 𝑦 = suc 𝑦)
148143, 147syl5eleqr 2737 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ ¬ 𝑦 = 𝑦) → 𝑦𝑦)
149 simplrr 818 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ ¬ 𝑦 = 𝑦) → ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)
150 fveq2 6229 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑦 → (𝐺𝑎) = (𝐺 𝑦))
151150eleq1d 2715 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑦 → ((𝐺𝑎) ∈ 𝐴 ↔ (𝐺 𝑦) ∈ 𝐴))
152151rspcv 3336 . . . . . . . . . . . . . . . 16 ( 𝑦𝑦 → (∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴 → (𝐺 𝑦) ∈ 𝐴))
153148, 149, 152sylc 65 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ ¬ 𝑦 = 𝑦) → (𝐺 𝑦) ∈ 𝐴)
154153adantr 480 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ ¬ 𝑦 = 𝑦) ∧ ¬ ((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴) → (𝐺 𝑦) ∈ 𝐴)
155136, 140, 141, 154ifbothda 4156 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) ∧ ¬ 𝑦 = 𝑦) → ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅)) ∈ 𝐴)
156134, 155ifclda 4153 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) → if(𝑦 = 𝑦, if(𝑦 = ∅, 𝐵, (𝐺𝑦)), ((𝐺 𝑦) ∪ if(((𝐺 𝑦) ∪ {(𝐹 𝑦)}) ∈ 𝐴, {(𝐹 𝑦)}, ∅))) ∈ 𝐴)
15733, 156eqeltrd 2730 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ suc (card‘( 𝐴𝐵)) ∧ ∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴)) → (𝐺𝑦) ∈ 𝐴)
158157expr 642 . . . . . . . . . 10 ((𝜑𝑦 ∈ suc (card‘( 𝐴𝐵))) → (∀𝑎𝑦 (𝐺𝑎) ∈ 𝐴 → (𝐺𝑦) ∈ 𝐴))
15924, 158sylbird 250 . . . . . . . . 9 ((𝜑𝑦 ∈ suc (card‘( 𝐴𝐵))) → (∀𝑎𝑦 (𝑎 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑎) ∈ 𝐴) → (𝐺𝑦) ∈ 𝐴))
160159ex 449 . . . . . . . 8 (𝜑 → (𝑦 ∈ suc (card‘( 𝐴𝐵)) → (∀𝑎𝑦 (𝑎 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑎) ∈ 𝐴) → (𝐺𝑦) ∈ 𝐴)))
161160com23 86 . . . . . . 7 (𝜑 → (∀𝑎𝑦 (𝑎 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑎) ∈ 𝐴) → (𝑦 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑦) ∈ 𝐴)))
162161a2i 14 . . . . . 6 ((𝜑 → ∀𝑎𝑦 (𝑎 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑎) ∈ 𝐴)) → (𝜑 → (𝑦 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑦) ∈ 𝐴)))
16316, 162sylbi 207 . . . . 5 (∀𝑎𝑦 (𝜑 → (𝑎 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑎) ∈ 𝐴)) → (𝜑 → (𝑦 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑦) ∈ 𝐴)))
164163a1i 11 . . . 4 (𝑦 ∈ On → (∀𝑎𝑦 (𝜑 → (𝑎 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑎) ∈ 𝐴)) → (𝜑 → (𝑦 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝑦) ∈ 𝐴))))
16510, 15, 164tfis3 7099 . . 3 (𝐶 ∈ On → (𝜑 → (𝐶 ∈ suc (card‘( 𝐴𝐵)) → (𝐺𝐶) ∈ 𝐴)))
166165impd 446 . 2 (𝐶 ∈ On → ((𝜑𝐶 ∈ suc (card‘( 𝐴𝐵))) → (𝐺𝐶) ∈ 𝐴))
1675, 166mpcom 38 1 ((𝜑𝐶 ∈ suc (card‘( 𝐴𝐵))) → (𝐺𝐶) ∈ 𝐴)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∨ wo 382   ∧ wa 383  ∀wal 1521   = wceq 1523  ∃wex 1744   ∈ wcel 2030   ≠ wne 2823  ∀wral 2941  ∃wrex 2942  Vcvv 3231   ∖ cdif 3604   ∪ cun 3605   ∩ cin 3606   ⊆ wss 3607  ∅c0 3948  ifcif 4119  𝒫 cpw 4191  {csn 4210  ∪ cuni 4468  ∪ ciun 4552   ↦ cmpt 4762  dom cdm 5143  ran crn 5144   “ cima 5146  Ord word 5760  Oncon0 5761  suc csuc 5763  Fun wfun 5920   Fn wfn 5921  ⟶wf 5922  –onto→wfo 5924  –1-1-onto→wf1o 5925  ‘cfv 5926  recscrecs 7512  Fincfn 7997  cardccrd 8799 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-om 7108  df-wrecs 7452  df-recs 7513  df-1o 7605  df-er 7787  df-en 7998  df-dom 7999  df-fin 8001  df-card 8803 This theorem is referenced by:  ttukeylem7  9375
 Copyright terms: Public domain W3C validator