MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppssov1 Structured version   Visualization version   GIF version

Theorem suppssov1 7279
Description: Formula building theorem for support restrictions: operator with left annihilator. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 28-May-2019.)
Hypotheses
Ref Expression
suppssov1.s (𝜑 → ((𝑥𝐷𝐴) supp 𝑌) ⊆ 𝐿)
suppssov1.o ((𝜑𝑣𝑅) → (𝑌𝑂𝑣) = 𝑍)
suppssov1.a ((𝜑𝑥𝐷) → 𝐴𝑉)
suppssov1.b ((𝜑𝑥𝐷) → 𝐵𝑅)
suppssov1.y (𝜑𝑌𝑊)
Assertion
Ref Expression
suppssov1 (𝜑 → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) ⊆ 𝐿)
Distinct variable groups:   𝜑,𝑣   𝜑,𝑥   𝑣,𝐵   𝑥,𝐷   𝑣,𝑂   𝑣,𝑅   𝑣,𝑌   𝑥,𝑌   𝑣,𝑍   𝑥,𝑍
Allowed substitution hints:   𝐴(𝑥,𝑣)   𝐵(𝑥)   𝐷(𝑣)   𝑅(𝑥)   𝐿(𝑥,𝑣)   𝑂(𝑥)   𝑉(𝑥,𝑣)   𝑊(𝑥,𝑣)

Proof of Theorem suppssov1
StepHypRef Expression
1 suppssov1.a . . . . . . . . . . 11 ((𝜑𝑥𝐷) → 𝐴𝑉)
2 elex 3201 . . . . . . . . . . 11 (𝐴𝑉𝐴 ∈ V)
31, 2syl 17 . . . . . . . . . 10 ((𝜑𝑥𝐷) → 𝐴 ∈ V)
43adantll 749 . . . . . . . . 9 ((((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑥𝐷) → 𝐴 ∈ V)
54adantr 481 . . . . . . . 8 (((((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑥𝐷) ∧ (𝐴𝑂𝐵) ∈ (V ∖ {𝑍})) → 𝐴 ∈ V)
6 eldifsni 4294 . . . . . . . . . 10 ((𝐴𝑂𝐵) ∈ (V ∖ {𝑍}) → (𝐴𝑂𝐵) ≠ 𝑍)
7 suppssov1.b . . . . . . . . . . . . . 14 ((𝜑𝑥𝐷) → 𝐵𝑅)
87adantll 749 . . . . . . . . . . . . 13 ((((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑥𝐷) → 𝐵𝑅)
9 suppssov1.o . . . . . . . . . . . . . . . 16 ((𝜑𝑣𝑅) → (𝑌𝑂𝑣) = 𝑍)
109ralrimiva 2961 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑣𝑅 (𝑌𝑂𝑣) = 𝑍)
1110adantl 482 . . . . . . . . . . . . . 14 (((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → ∀𝑣𝑅 (𝑌𝑂𝑣) = 𝑍)
1211adantr 481 . . . . . . . . . . . . 13 ((((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑥𝐷) → ∀𝑣𝑅 (𝑌𝑂𝑣) = 𝑍)
13 oveq2 6618 . . . . . . . . . . . . . . 15 (𝑣 = 𝐵 → (𝑌𝑂𝑣) = (𝑌𝑂𝐵))
1413eqeq1d 2623 . . . . . . . . . . . . . 14 (𝑣 = 𝐵 → ((𝑌𝑂𝑣) = 𝑍 ↔ (𝑌𝑂𝐵) = 𝑍))
1514rspcva 3296 . . . . . . . . . . . . 13 ((𝐵𝑅 ∧ ∀𝑣𝑅 (𝑌𝑂𝑣) = 𝑍) → (𝑌𝑂𝐵) = 𝑍)
168, 12, 15syl2anc 692 . . . . . . . . . . . 12 ((((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑥𝐷) → (𝑌𝑂𝐵) = 𝑍)
17 oveq1 6617 . . . . . . . . . . . . 13 (𝐴 = 𝑌 → (𝐴𝑂𝐵) = (𝑌𝑂𝐵))
1817eqeq1d 2623 . . . . . . . . . . . 12 (𝐴 = 𝑌 → ((𝐴𝑂𝐵) = 𝑍 ↔ (𝑌𝑂𝐵) = 𝑍))
1916, 18syl5ibrcom 237 . . . . . . . . . . 11 ((((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑥𝐷) → (𝐴 = 𝑌 → (𝐴𝑂𝐵) = 𝑍))
2019necon3d 2811 . . . . . . . . . 10 ((((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑥𝐷) → ((𝐴𝑂𝐵) ≠ 𝑍𝐴𝑌))
216, 20syl5 34 . . . . . . . . 9 ((((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑥𝐷) → ((𝐴𝑂𝐵) ∈ (V ∖ {𝑍}) → 𝐴𝑌))
2221imp 445 . . . . . . . 8 (((((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑥𝐷) ∧ (𝐴𝑂𝐵) ∈ (V ∖ {𝑍})) → 𝐴𝑌)
23 eldifsn 4292 . . . . . . . 8 (𝐴 ∈ (V ∖ {𝑌}) ↔ (𝐴 ∈ V ∧ 𝐴𝑌))
245, 22, 23sylanbrc 697 . . . . . . 7 (((((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑥𝐷) ∧ (𝐴𝑂𝐵) ∈ (V ∖ {𝑍})) → 𝐴 ∈ (V ∖ {𝑌}))
2524ex 450 . . . . . 6 ((((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) ∧ 𝑥𝐷) → ((𝐴𝑂𝐵) ∈ (V ∖ {𝑍}) → 𝐴 ∈ (V ∖ {𝑌})))
2625ss2rabdv 3667 . . . . 5 (((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → {𝑥𝐷 ∣ (𝐴𝑂𝐵) ∈ (V ∖ {𝑍})} ⊆ {𝑥𝐷𝐴 ∈ (V ∖ {𝑌})})
27 eqid 2621 . . . . . 6 (𝑥𝐷 ↦ (𝐴𝑂𝐵)) = (𝑥𝐷 ↦ (𝐴𝑂𝐵))
28 simpll 789 . . . . . 6 (((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → 𝐷 ∈ V)
29 simplr 791 . . . . . 6 (((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → 𝑍 ∈ V)
3027, 28, 29mptsuppdifd 7269 . . . . 5 (((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) = {𝑥𝐷 ∣ (𝐴𝑂𝐵) ∈ (V ∖ {𝑍})})
31 eqid 2621 . . . . . 6 (𝑥𝐷𝐴) = (𝑥𝐷𝐴)
32 suppssov1.y . . . . . . 7 (𝜑𝑌𝑊)
3332adantl 482 . . . . . 6 (((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → 𝑌𝑊)
3431, 28, 33mptsuppdifd 7269 . . . . 5 (((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → ((𝑥𝐷𝐴) supp 𝑌) = {𝑥𝐷𝐴 ∈ (V ∖ {𝑌})})
3526, 30, 343sstr4d 3632 . . . 4 (((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) ⊆ ((𝑥𝐷𝐴) supp 𝑌))
36 suppssov1.s . . . . 5 (𝜑 → ((𝑥𝐷𝐴) supp 𝑌) ⊆ 𝐿)
3736adantl 482 . . . 4 (((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → ((𝑥𝐷𝐴) supp 𝑌) ⊆ 𝐿)
3835, 37sstrd 3597 . . 3 (((𝐷 ∈ V ∧ 𝑍 ∈ V) ∧ 𝜑) → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) ⊆ 𝐿)
3938ex 450 . 2 ((𝐷 ∈ V ∧ 𝑍 ∈ V) → (𝜑 → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) ⊆ 𝐿))
40 mptexg 6444 . . . . . . 7 (𝐷 ∈ V → (𝑥𝐷 ↦ (𝐴𝑂𝐵)) ∈ V)
41 ovex 6638 . . . . . . . . . 10 (𝐴𝑂𝐵) ∈ V
4241rgenw 2919 . . . . . . . . 9 𝑥𝐷 (𝐴𝑂𝐵) ∈ V
43 dmmptg 5596 . . . . . . . . 9 (∀𝑥𝐷 (𝐴𝑂𝐵) ∈ V → dom (𝑥𝐷 ↦ (𝐴𝑂𝐵)) = 𝐷)
4442, 43ax-mp 5 . . . . . . . 8 dom (𝑥𝐷 ↦ (𝐴𝑂𝐵)) = 𝐷
45 dmexg 7051 . . . . . . . 8 ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) ∈ V → dom (𝑥𝐷 ↦ (𝐴𝑂𝐵)) ∈ V)
4644, 45syl5eqelr 2703 . . . . . . 7 ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) ∈ V → 𝐷 ∈ V)
4740, 46impbii 199 . . . . . 6 (𝐷 ∈ V ↔ (𝑥𝐷 ↦ (𝐴𝑂𝐵)) ∈ V)
4847anbi1i 730 . . . . 5 ((𝐷 ∈ V ∧ 𝑍 ∈ V) ↔ ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) ∈ V ∧ 𝑍 ∈ V))
49 supp0prc 7250 . . . . 5 (¬ ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) ∈ V ∧ 𝑍 ∈ V) → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) = ∅)
5048, 49sylnbi 320 . . . 4 (¬ (𝐷 ∈ V ∧ 𝑍 ∈ V) → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) = ∅)
51 0ss 3949 . . . 4 ∅ ⊆ 𝐿
5250, 51syl6eqss 3639 . . 3 (¬ (𝐷 ∈ V ∧ 𝑍 ∈ V) → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) ⊆ 𝐿)
5352a1d 25 . 2 (¬ (𝐷 ∈ V ∧ 𝑍 ∈ V) → (𝜑 → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) ⊆ 𝐿))
5439, 53pm2.61i 176 1 (𝜑 → ((𝑥𝐷 ↦ (𝐴𝑂𝐵)) supp 𝑍) ⊆ 𝐿)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1480  wcel 1987  wne 2790  wral 2907  {crab 2911  Vcvv 3189  cdif 3556  wss 3559  c0 3896  {csn 4153  cmpt 4678  dom cdm 5079  (class class class)co 6610   supp csupp 7247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-supp 7248
This theorem is referenced by:  suppssof1  7280  evlslem6  19445  plypf1  23889
  Copyright terms: Public domain W3C validator