MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnt0 Structured version   Visualization version   GIF version

Theorem cnt0 21954
Description: The preimage of a T0 topology under an injective map is T0. (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
cnt0 ((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Kol2)

Proof of Theorem cnt0
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cntop1 21848 . . 3 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
213ad2ant3 1131 . 2 ((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Top)
3 simpl3 1189 . . . . . . . . 9 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → 𝐹 ∈ (𝐽 Cn 𝐾))
4 cnima 21873 . . . . . . . . 9 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑤𝐾) → (𝐹𝑤) ∈ 𝐽)
53, 4sylan 582 . . . . . . . 8 ((((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) ∧ 𝑤𝐾) → (𝐹𝑤) ∈ 𝐽)
6 eleq2 2901 . . . . . . . . . 10 (𝑧 = (𝐹𝑤) → (𝑥𝑧𝑥 ∈ (𝐹𝑤)))
7 eleq2 2901 . . . . . . . . . 10 (𝑧 = (𝐹𝑤) → (𝑦𝑧𝑦 ∈ (𝐹𝑤)))
86, 7bibi12d 348 . . . . . . . . 9 (𝑧 = (𝐹𝑤) → ((𝑥𝑧𝑦𝑧) ↔ (𝑥 ∈ (𝐹𝑤) ↔ 𝑦 ∈ (𝐹𝑤))))
98rspcv 3618 . . . . . . . 8 ((𝐹𝑤) ∈ 𝐽 → (∀𝑧𝐽 (𝑥𝑧𝑦𝑧) → (𝑥 ∈ (𝐹𝑤) ↔ 𝑦 ∈ (𝐹𝑤))))
105, 9syl 17 . . . . . . 7 ((((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) ∧ 𝑤𝐾) → (∀𝑧𝐽 (𝑥𝑧𝑦𝑧) → (𝑥 ∈ (𝐹𝑤) ↔ 𝑦 ∈ (𝐹𝑤))))
11 simprl 769 . . . . . . . . . 10 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → 𝑥 𝐽)
12 eqid 2821 . . . . . . . . . . . . . 14 𝐽 = 𝐽
13 eqid 2821 . . . . . . . . . . . . . 14 𝐾 = 𝐾
1412, 13cnf 21854 . . . . . . . . . . . . 13 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽 𝐾)
153, 14syl 17 . . . . . . . . . . . 12 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → 𝐹: 𝐽 𝐾)
1615ffnd 6515 . . . . . . . . . . 11 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → 𝐹 Fn 𝐽)
17 elpreima 6828 . . . . . . . . . . 11 (𝐹 Fn 𝐽 → (𝑥 ∈ (𝐹𝑤) ↔ (𝑥 𝐽 ∧ (𝐹𝑥) ∈ 𝑤)))
1816, 17syl 17 . . . . . . . . . 10 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → (𝑥 ∈ (𝐹𝑤) ↔ (𝑥 𝐽 ∧ (𝐹𝑥) ∈ 𝑤)))
1911, 18mpbirand 705 . . . . . . . . 9 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → (𝑥 ∈ (𝐹𝑤) ↔ (𝐹𝑥) ∈ 𝑤))
20 simprr 771 . . . . . . . . . 10 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → 𝑦 𝐽)
21 elpreima 6828 . . . . . . . . . . 11 (𝐹 Fn 𝐽 → (𝑦 ∈ (𝐹𝑤) ↔ (𝑦 𝐽 ∧ (𝐹𝑦) ∈ 𝑤)))
2216, 21syl 17 . . . . . . . . . 10 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → (𝑦 ∈ (𝐹𝑤) ↔ (𝑦 𝐽 ∧ (𝐹𝑦) ∈ 𝑤)))
2320, 22mpbirand 705 . . . . . . . . 9 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → (𝑦 ∈ (𝐹𝑤) ↔ (𝐹𝑦) ∈ 𝑤))
2419, 23bibi12d 348 . . . . . . . 8 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → ((𝑥 ∈ (𝐹𝑤) ↔ 𝑦 ∈ (𝐹𝑤)) ↔ ((𝐹𝑥) ∈ 𝑤 ↔ (𝐹𝑦) ∈ 𝑤)))
2524adantr 483 . . . . . . 7 ((((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) ∧ 𝑤𝐾) → ((𝑥 ∈ (𝐹𝑤) ↔ 𝑦 ∈ (𝐹𝑤)) ↔ ((𝐹𝑥) ∈ 𝑤 ↔ (𝐹𝑦) ∈ 𝑤)))
2610, 25sylibd 241 . . . . . 6 ((((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) ∧ 𝑤𝐾) → (∀𝑧𝐽 (𝑥𝑧𝑦𝑧) → ((𝐹𝑥) ∈ 𝑤 ↔ (𝐹𝑦) ∈ 𝑤)))
2726ralrimdva 3189 . . . . 5 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → (∀𝑧𝐽 (𝑥𝑧𝑦𝑧) → ∀𝑤𝐾 ((𝐹𝑥) ∈ 𝑤 ↔ (𝐹𝑦) ∈ 𝑤)))
28 simpl1 1187 . . . . . 6 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → 𝐾 ∈ Kol2)
2915, 11ffvelrnd 6852 . . . . . 6 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → (𝐹𝑥) ∈ 𝐾)
3015, 20ffvelrnd 6852 . . . . . 6 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → (𝐹𝑦) ∈ 𝐾)
3113t0sep 21932 . . . . . 6 ((𝐾 ∈ Kol2 ∧ ((𝐹𝑥) ∈ 𝐾 ∧ (𝐹𝑦) ∈ 𝐾)) → (∀𝑤𝐾 ((𝐹𝑥) ∈ 𝑤 ↔ (𝐹𝑦) ∈ 𝑤) → (𝐹𝑥) = (𝐹𝑦)))
3228, 29, 30, 31syl12anc 834 . . . . 5 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → (∀𝑤𝐾 ((𝐹𝑥) ∈ 𝑤 ↔ (𝐹𝑦) ∈ 𝑤) → (𝐹𝑥) = (𝐹𝑦)))
3327, 32syld 47 . . . 4 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → (∀𝑧𝐽 (𝑥𝑧𝑦𝑧) → (𝐹𝑥) = (𝐹𝑦)))
34 simpl2 1188 . . . . 5 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → 𝐹:𝑋1-1𝑌)
3515fdmd 6523 . . . . . . 7 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → dom 𝐹 = 𝐽)
36 f1dm 6579 . . . . . . . 8 (𝐹:𝑋1-1𝑌 → dom 𝐹 = 𝑋)
3734, 36syl 17 . . . . . . 7 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → dom 𝐹 = 𝑋)
3835, 37eqtr3d 2858 . . . . . 6 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → 𝐽 = 𝑋)
3911, 38eleqtrd 2915 . . . . 5 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → 𝑥𝑋)
4020, 38eleqtrd 2915 . . . . 5 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → 𝑦𝑋)
41 f1fveq 7020 . . . . 5 ((𝐹:𝑋1-1𝑌 ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑥) = (𝐹𝑦) ↔ 𝑥 = 𝑦))
4234, 39, 40, 41syl12anc 834 . . . 4 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → ((𝐹𝑥) = (𝐹𝑦) ↔ 𝑥 = 𝑦))
4333, 42sylibd 241 . . 3 (((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) ∧ (𝑥 𝐽𝑦 𝐽)) → (∀𝑧𝐽 (𝑥𝑧𝑦𝑧) → 𝑥 = 𝑦))
4443ralrimivva 3191 . 2 ((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → ∀𝑥 𝐽𝑦 𝐽(∀𝑧𝐽 (𝑥𝑧𝑦𝑧) → 𝑥 = 𝑦))
4512ist0 21928 . 2 (𝐽 ∈ Kol2 ↔ (𝐽 ∈ Top ∧ ∀𝑥 𝐽𝑦 𝐽(∀𝑧𝐽 (𝑥𝑧𝑦𝑧) → 𝑥 = 𝑦)))
462, 44, 45sylanbrc 585 1 ((𝐾 ∈ Kol2 ∧ 𝐹:𝑋1-1𝑌𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Kol2)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3138   cuni 4838  ccnv 5554  dom cdm 5555  cima 5558   Fn wfn 6350  wf 6351  1-1wf1 6352  cfv 6355  (class class class)co 7156  Topctop 21501   Cn ccn 21832  Kol2ct0 21914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-map 8408  df-top 21502  df-topon 21519  df-cn 21835  df-t0 21921
This theorem is referenced by:  restt0  21974  sst0  21981  t0hmph  22398
  Copyright terms: Public domain W3C validator