Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  t1ficld Structured version   Visualization version   GIF version

Theorem t1ficld 21041
 Description: In a T1 space, finite sets are closed. (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypothesis
Ref Expression
ist0.1 𝑋 = 𝐽
Assertion
Ref Expression
t1ficld ((𝐽 ∈ Fre ∧ 𝐴𝑋𝐴 ∈ Fin) → 𝐴 ∈ (Clsd‘𝐽))

Proof of Theorem t1ficld
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 iunid 4541 . 2 𝑥𝐴 {𝑥} = 𝐴
2 ist0.1 . . . . . 6 𝑋 = 𝐽
32ist1 21035 . . . . 5 (𝐽 ∈ Fre ↔ (𝐽 ∈ Top ∧ ∀𝑥𝑋 {𝑥} ∈ (Clsd‘𝐽)))
43simplbi 476 . . . 4 (𝐽 ∈ Fre → 𝐽 ∈ Top)
543ad2ant1 1080 . . 3 ((𝐽 ∈ Fre ∧ 𝐴𝑋𝐴 ∈ Fin) → 𝐽 ∈ Top)
6 simp3 1061 . . 3 ((𝐽 ∈ Fre ∧ 𝐴𝑋𝐴 ∈ Fin) → 𝐴 ∈ Fin)
73simprbi 480 . . . . 5 (𝐽 ∈ Fre → ∀𝑥𝑋 {𝑥} ∈ (Clsd‘𝐽))
8 ssralv 3645 . . . . 5 (𝐴𝑋 → (∀𝑥𝑋 {𝑥} ∈ (Clsd‘𝐽) → ∀𝑥𝐴 {𝑥} ∈ (Clsd‘𝐽)))
97, 8mpan9 486 . . . 4 ((𝐽 ∈ Fre ∧ 𝐴𝑋) → ∀𝑥𝐴 {𝑥} ∈ (Clsd‘𝐽))
1093adant3 1079 . . 3 ((𝐽 ∈ Fre ∧ 𝐴𝑋𝐴 ∈ Fin) → ∀𝑥𝐴 {𝑥} ∈ (Clsd‘𝐽))
112iuncld 20759 . . 3 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin ∧ ∀𝑥𝐴 {𝑥} ∈ (Clsd‘𝐽)) → 𝑥𝐴 {𝑥} ∈ (Clsd‘𝐽))
125, 6, 10, 11syl3anc 1323 . 2 ((𝐽 ∈ Fre ∧ 𝐴𝑋𝐴 ∈ Fin) → 𝑥𝐴 {𝑥} ∈ (Clsd‘𝐽))
131, 12syl5eqelr 2703 1 ((𝐽 ∈ Fre ∧ 𝐴𝑋𝐴 ∈ Fin) → 𝐴 ∈ (Clsd‘𝐽))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987  ∀wral 2907   ⊆ wss 3555  {csn 4148  ∪ cuni 4402  ∪ ciun 4485  ‘cfv 5847  Fincfn 7899  Topctop 20617  Clsdccld 20730  Frect1 21021 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-en 7900  df-dom 7901  df-fin 7903  df-top 20621  df-cld 20733  df-t1 21028 This theorem is referenced by:  poimirlem30  33071
 Copyright terms: Public domain W3C validator