Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  poimirlem30 Structured version   Visualization version   GIF version

Theorem poimirlem30 34937
Description: Lemma for poimir 34940 combining poimirlem29 34936 with bwth 22018. (Contributed by Brendan Leahy, 21-Aug-2020.)
Hypotheses
Ref Expression
poimir.0 (𝜑𝑁 ∈ ℕ)
poimir.i 𝐼 = ((0[,]1) ↑m (1...𝑁))
poimir.r 𝑅 = (∏t‘((1...𝑁) × {(topGen‘ran (,))}))
poimir.1 (𝜑𝐹 ∈ ((𝑅t 𝐼) Cn 𝑅))
poimirlem30.x 𝑋 = ((𝐹‘(((1st ‘(𝐺𝑘)) ∘f + ((((2nd ‘(𝐺𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(𝐺𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f / ((1...𝑁) × {𝑘})))‘𝑛)
poimirlem30.2 (𝜑𝐺:ℕ⟶((ℕ0m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
poimirlem30.3 ((𝜑𝑘 ∈ ℕ) → ran (1st ‘(𝐺𝑘)) ⊆ (0..^𝑘))
poimirlem30.4 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁) ∧ 𝑟 ∈ { ≤ , ≤ })) → ∃𝑗 ∈ (0...𝑁)0𝑟𝑋)
Assertion
Ref Expression
poimirlem30 (𝜑 → ∃𝑐𝐼𝑛 ∈ (1...𝑁)∀𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 → ∀𝑟 ∈ { ≤ , ≤ }∃𝑧𝑣 0𝑟((𝐹𝑧)‘𝑛)))
Distinct variable groups:   𝑓,𝑗,𝑘,𝑛,𝑧   𝜑,𝑗,𝑛   𝑗,𝐹,𝑛   𝑗,𝑁,𝑛   𝜑,𝑘   𝑓,𝑁,𝑘   𝜑,𝑧   𝑓,𝐹,𝑘,𝑧   𝑧,𝑁   𝑗,𝑐,𝑘,𝑛,𝑟,𝑣,𝑧,𝜑   𝑓,𝑐,𝐹,𝑟,𝑣   𝐺,𝑐,𝑓,𝑗,𝑘,𝑛,𝑟,𝑣,𝑧   𝐼,𝑐,𝑓,𝑗,𝑘,𝑛,𝑟,𝑣,𝑧   𝑁,𝑐,𝑟,𝑣   𝑅,𝑐,𝑓,𝑗,𝑘,𝑛,𝑟,𝑣,𝑧   𝑋,𝑐,𝑓,𝑟,𝑣,𝑧
Allowed substitution hints:   𝜑(𝑓)   𝑋(𝑗,𝑘,𝑛)

Proof of Theorem poimirlem30
Dummy variables 𝑖 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfzonn0 13083 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (0..^𝑘) → 𝑖 ∈ ℕ0)
21nn0red 11957 . . . . . . . . . . . . . . 15 (𝑖 ∈ (0..^𝑘) → 𝑖 ∈ ℝ)
3 nndivre 11679 . . . . . . . . . . . . . . 15 ((𝑖 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (𝑖 / 𝑘) ∈ ℝ)
42, 3sylan 582 . . . . . . . . . . . . . 14 ((𝑖 ∈ (0..^𝑘) ∧ 𝑘 ∈ ℕ) → (𝑖 / 𝑘) ∈ ℝ)
5 elfzole1 13047 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (0..^𝑘) → 0 ≤ 𝑖)
62, 5jca 514 . . . . . . . . . . . . . . 15 (𝑖 ∈ (0..^𝑘) → (𝑖 ∈ ℝ ∧ 0 ≤ 𝑖))
7 nnrp 12401 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
87rpregt0d 12438 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → (𝑘 ∈ ℝ ∧ 0 < 𝑘))
9 divge0 11509 . . . . . . . . . . . . . . 15 (((𝑖 ∈ ℝ ∧ 0 ≤ 𝑖) ∧ (𝑘 ∈ ℝ ∧ 0 < 𝑘)) → 0 ≤ (𝑖 / 𝑘))
106, 8, 9syl2an 597 . . . . . . . . . . . . . 14 ((𝑖 ∈ (0..^𝑘) ∧ 𝑘 ∈ ℕ) → 0 ≤ (𝑖 / 𝑘))
11 elfzo0le 13082 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (0..^𝑘) → 𝑖𝑘)
1211adantr 483 . . . . . . . . . . . . . . 15 ((𝑖 ∈ (0..^𝑘) ∧ 𝑘 ∈ ℕ) → 𝑖𝑘)
132adantr 483 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (0..^𝑘) ∧ 𝑘 ∈ ℕ) → 𝑖 ∈ ℝ)
14 1red 10642 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (0..^𝑘) ∧ 𝑘 ∈ ℕ) → 1 ∈ ℝ)
157adantl 484 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (0..^𝑘) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℝ+)
1613, 14, 15ledivmuld 12485 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ (0..^𝑘) ∧ 𝑘 ∈ ℕ) → ((𝑖 / 𝑘) ≤ 1 ↔ 𝑖 ≤ (𝑘 · 1)))
17 nncn 11646 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
1817mulid1d 10658 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → (𝑘 · 1) = 𝑘)
1918breq2d 5078 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → (𝑖 ≤ (𝑘 · 1) ↔ 𝑖𝑘))
2019adantl 484 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ (0..^𝑘) ∧ 𝑘 ∈ ℕ) → (𝑖 ≤ (𝑘 · 1) ↔ 𝑖𝑘))
2116, 20bitrd 281 . . . . . . . . . . . . . . 15 ((𝑖 ∈ (0..^𝑘) ∧ 𝑘 ∈ ℕ) → ((𝑖 / 𝑘) ≤ 1 ↔ 𝑖𝑘))
2212, 21mpbird 259 . . . . . . . . . . . . . 14 ((𝑖 ∈ (0..^𝑘) ∧ 𝑘 ∈ ℕ) → (𝑖 / 𝑘) ≤ 1)
23 elicc01 12855 . . . . . . . . . . . . . 14 ((𝑖 / 𝑘) ∈ (0[,]1) ↔ ((𝑖 / 𝑘) ∈ ℝ ∧ 0 ≤ (𝑖 / 𝑘) ∧ (𝑖 / 𝑘) ≤ 1))
244, 10, 22, 23syl3anbrc 1339 . . . . . . . . . . . . 13 ((𝑖 ∈ (0..^𝑘) ∧ 𝑘 ∈ ℕ) → (𝑖 / 𝑘) ∈ (0[,]1))
2524ancoms 461 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ ∧ 𝑖 ∈ (0..^𝑘)) → (𝑖 / 𝑘) ∈ (0[,]1))
26 elsni 4584 . . . . . . . . . . . . . 14 (𝑗 ∈ {𝑘} → 𝑗 = 𝑘)
2726oveq2d 7172 . . . . . . . . . . . . 13 (𝑗 ∈ {𝑘} → (𝑖 / 𝑗) = (𝑖 / 𝑘))
2827eleq1d 2897 . . . . . . . . . . . 12 (𝑗 ∈ {𝑘} → ((𝑖 / 𝑗) ∈ (0[,]1) ↔ (𝑖 / 𝑘) ∈ (0[,]1)))
2925, 28syl5ibrcom 249 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝑖 ∈ (0..^𝑘)) → (𝑗 ∈ {𝑘} → (𝑖 / 𝑗) ∈ (0[,]1)))
3029impr 457 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ (𝑖 ∈ (0..^𝑘) ∧ 𝑗 ∈ {𝑘})) → (𝑖 / 𝑗) ∈ (0[,]1))
3130adantll 712 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ) ∧ (𝑖 ∈ (0..^𝑘) ∧ 𝑗 ∈ {𝑘})) → (𝑖 / 𝑗) ∈ (0[,]1))
32 poimirlem30.2 . . . . . . . . . . . 12 (𝜑𝐺:ℕ⟶((ℕ0m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
3332ffvelrnda 6851 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ) → (𝐺𝑘) ∈ ((ℕ0m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}))
34 xp1st 7721 . . . . . . . . . . 11 ((𝐺𝑘) ∈ ((ℕ0m (1...𝑁)) × {𝑓𝑓:(1...𝑁)–1-1-onto→(1...𝑁)}) → (1st ‘(𝐺𝑘)) ∈ (ℕ0m (1...𝑁)))
35 elmapfn 8429 . . . . . . . . . . 11 ((1st ‘(𝐺𝑘)) ∈ (ℕ0m (1...𝑁)) → (1st ‘(𝐺𝑘)) Fn (1...𝑁))
3633, 34, 353syl 18 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → (1st ‘(𝐺𝑘)) Fn (1...𝑁))
37 poimirlem30.3 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ) → ran (1st ‘(𝐺𝑘)) ⊆ (0..^𝑘))
38 df-f 6359 . . . . . . . . . 10 ((1st ‘(𝐺𝑘)):(1...𝑁)⟶(0..^𝑘) ↔ ((1st ‘(𝐺𝑘)) Fn (1...𝑁) ∧ ran (1st ‘(𝐺𝑘)) ⊆ (0..^𝑘)))
3936, 37, 38sylanbrc 585 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (1st ‘(𝐺𝑘)):(1...𝑁)⟶(0..^𝑘))
40 vex 3497 . . . . . . . . . . 11 𝑘 ∈ V
4140fconst 6565 . . . . . . . . . 10 ((1...𝑁) × {𝑘}):(1...𝑁)⟶{𝑘}
4241a1i 11 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → ((1...𝑁) × {𝑘}):(1...𝑁)⟶{𝑘})
43 fzfid 13342 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → (1...𝑁) ∈ Fin)
44 inidm 4195 . . . . . . . . 9 ((1...𝑁) ∩ (1...𝑁)) = (1...𝑁)
4531, 39, 42, 43, 43, 44off 7424 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})):(1...𝑁)⟶(0[,]1))
46 poimir.i . . . . . . . . . 10 𝐼 = ((0[,]1) ↑m (1...𝑁))
4746eleq2i 2904 . . . . . . . . 9 (((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})) ∈ 𝐼 ↔ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})) ∈ ((0[,]1) ↑m (1...𝑁)))
48 ovex 7189 . . . . . . . . . 10 (0[,]1) ∈ V
49 ovex 7189 . . . . . . . . . 10 (1...𝑁) ∈ V
5048, 49elmap 8435 . . . . . . . . 9 (((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})) ∈ ((0[,]1) ↑m (1...𝑁)) ↔ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})):(1...𝑁)⟶(0[,]1))
5147, 50bitri 277 . . . . . . . 8 (((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})) ∈ 𝐼 ↔ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})):(1...𝑁)⟶(0[,]1))
5245, 51sylibr 236 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})) ∈ 𝐼)
5352fmpttd 6879 . . . . . 6 (𝜑 → (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))):ℕ⟶𝐼)
5453frnd 6521 . . . . 5 (𝜑 → ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ⊆ 𝐼)
55 ominf 8730 . . . . . . 7 ¬ ω ∈ Fin
56 nnenom 13349 . . . . . . . . 9 ℕ ≈ ω
57 enfi 8734 . . . . . . . . 9 (ℕ ≈ ω → (ℕ ∈ Fin ↔ ω ∈ Fin))
5856, 57ax-mp 5 . . . . . . . 8 (ℕ ∈ Fin ↔ ω ∈ Fin)
59 iunid 4984 . . . . . . . . . . 11 𝑐 ∈ ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))){𝑐} = ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})))
6059imaeq2i 5927 . . . . . . . . . 10 ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ 𝑐 ∈ ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))){𝑐}) = ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))))
61 imaiun 7004 . . . . . . . . . 10 ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ 𝑐 ∈ ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))){𝑐}) = 𝑐 ∈ ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})))((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ {𝑐})
62 ovex 7189 . . . . . . . . . . . . 13 ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})) ∈ V
63 eqid 2821 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) = (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})))
6462, 63fnmpti 6491 . . . . . . . . . . . 12 (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) Fn ℕ
65 dffn3 6525 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) Fn ℕ ↔ (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))):ℕ⟶ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))))
6664, 65mpbi 232 . . . . . . . . . . 11 (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))):ℕ⟶ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})))
67 fimacnv 6839 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))):ℕ⟶ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) → ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})))) = ℕ)
6866, 67ax-mp 5 . . . . . . . . . 10 ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})))) = ℕ
6960, 61, 683eqtr3ri 2853 . . . . . . . . 9 ℕ = 𝑐 ∈ ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})))((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ {𝑐})
7069eleq1i 2903 . . . . . . . 8 (ℕ ∈ Fin ↔ 𝑐 ∈ ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})))((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ {𝑐}) ∈ Fin)
7158, 70bitr3i 279 . . . . . . 7 (ω ∈ Fin ↔ 𝑐 ∈ ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})))((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ {𝑐}) ∈ Fin)
7255, 71mtbi 324 . . . . . 6 ¬ 𝑐 ∈ ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})))((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ {𝑐}) ∈ Fin
73 ralnex 3236 . . . . . . . . . . . 12 (∀𝑘 ∈ (ℤ𝑖) ¬ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐 ↔ ¬ ∃𝑘 ∈ (ℤ𝑖)((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐)
7473rexbii 3247 . . . . . . . . . . 11 (∃𝑖 ∈ ℕ ∀𝑘 ∈ (ℤ𝑖) ¬ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐 ↔ ∃𝑖 ∈ ℕ ¬ ∃𝑘 ∈ (ℤ𝑖)((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐)
75 rexnal 3238 . . . . . . . . . . 11 (∃𝑖 ∈ ℕ ¬ ∃𝑘 ∈ (ℤ𝑖)((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐 ↔ ¬ ∀𝑖 ∈ ℕ ∃𝑘 ∈ (ℤ𝑖)((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐)
7674, 75bitri 277 . . . . . . . . . 10 (∃𝑖 ∈ ℕ ∀𝑘 ∈ (ℤ𝑖) ¬ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐 ↔ ¬ ∀𝑖 ∈ ℕ ∃𝑘 ∈ (ℤ𝑖)((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐)
7776ralbii 3165 . . . . . . . . 9 (∀𝑐 ∈ ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})))∃𝑖 ∈ ℕ ∀𝑘 ∈ (ℤ𝑖) ¬ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐 ↔ ∀𝑐 ∈ ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ¬ ∀𝑖 ∈ ℕ ∃𝑘 ∈ (ℤ𝑖)((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐)
78 ralnex 3236 . . . . . . . . 9 (∀𝑐 ∈ ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ¬ ∀𝑖 ∈ ℕ ∃𝑘 ∈ (ℤ𝑖)((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐 ↔ ¬ ∃𝑐 ∈ ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})))∀𝑖 ∈ ℕ ∃𝑘 ∈ (ℤ𝑖)((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐)
7977, 78bitri 277 . . . . . . . 8 (∀𝑐 ∈ ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})))∃𝑖 ∈ ℕ ∀𝑘 ∈ (ℤ𝑖) ¬ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐 ↔ ¬ ∃𝑐 ∈ ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})))∀𝑖 ∈ ℕ ∃𝑘 ∈ (ℤ𝑖)((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐)
80 nnuz 12282 . . . . . . . . . . . . . . . 16 ℕ = (ℤ‘1)
81 elnnuz 12283 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ ℕ ↔ 𝑖 ∈ (ℤ‘1))
82 fzouzsplit 13073 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ (ℤ‘1) → (ℤ‘1) = ((1..^𝑖) ∪ (ℤ𝑖)))
8381, 82sylbi 219 . . . . . . . . . . . . . . . 16 (𝑖 ∈ ℕ → (ℤ‘1) = ((1..^𝑖) ∪ (ℤ𝑖)))
8480, 83syl5eq 2868 . . . . . . . . . . . . . . 15 (𝑖 ∈ ℕ → ℕ = ((1..^𝑖) ∪ (ℤ𝑖)))
8584difeq1d 4098 . . . . . . . . . . . . . 14 (𝑖 ∈ ℕ → (ℕ ∖ (1..^𝑖)) = (((1..^𝑖) ∪ (ℤ𝑖)) ∖ (1..^𝑖)))
86 uncom 4129 . . . . . . . . . . . . . . . 16 ((1..^𝑖) ∪ (ℤ𝑖)) = ((ℤ𝑖) ∪ (1..^𝑖))
8786difeq1i 4095 . . . . . . . . . . . . . . 15 (((1..^𝑖) ∪ (ℤ𝑖)) ∖ (1..^𝑖)) = (((ℤ𝑖) ∪ (1..^𝑖)) ∖ (1..^𝑖))
88 difun2 4429 . . . . . . . . . . . . . . 15 (((ℤ𝑖) ∪ (1..^𝑖)) ∖ (1..^𝑖)) = ((ℤ𝑖) ∖ (1..^𝑖))
8987, 88eqtri 2844 . . . . . . . . . . . . . 14 (((1..^𝑖) ∪ (ℤ𝑖)) ∖ (1..^𝑖)) = ((ℤ𝑖) ∖ (1..^𝑖))
9085, 89syl6eq 2872 . . . . . . . . . . . . 13 (𝑖 ∈ ℕ → (ℕ ∖ (1..^𝑖)) = ((ℤ𝑖) ∖ (1..^𝑖)))
91 difss 4108 . . . . . . . . . . . . 13 ((ℤ𝑖) ∖ (1..^𝑖)) ⊆ (ℤ𝑖)
9290, 91eqsstrdi 4021 . . . . . . . . . . . 12 (𝑖 ∈ ℕ → (ℕ ∖ (1..^𝑖)) ⊆ (ℤ𝑖))
93 ssralv 4033 . . . . . . . . . . . 12 ((ℕ ∖ (1..^𝑖)) ⊆ (ℤ𝑖) → (∀𝑘 ∈ (ℤ𝑖) ¬ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐 → ∀𝑘 ∈ (ℕ ∖ (1..^𝑖)) ¬ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐))
9492, 93syl 17 . . . . . . . . . . 11 (𝑖 ∈ ℕ → (∀𝑘 ∈ (ℤ𝑖) ¬ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐 → ∀𝑘 ∈ (ℕ ∖ (1..^𝑖)) ¬ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐))
95 impexp 453 . . . . . . . . . . . . . . 15 (((𝑘 ∈ ℕ ∧ ¬ 𝑘 ∈ (1..^𝑖)) → ¬ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐) ↔ (𝑘 ∈ ℕ → (¬ 𝑘 ∈ (1..^𝑖) → ¬ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐)))
96 eldif 3946 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (ℕ ∖ (1..^𝑖)) ↔ (𝑘 ∈ ℕ ∧ ¬ 𝑘 ∈ (1..^𝑖)))
9796imbi1i 352 . . . . . . . . . . . . . . 15 ((𝑘 ∈ (ℕ ∖ (1..^𝑖)) → ¬ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐) ↔ ((𝑘 ∈ ℕ ∧ ¬ 𝑘 ∈ (1..^𝑖)) → ¬ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐))
98 con34b 318 . . . . . . . . . . . . . . . 16 ((((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐𝑘 ∈ (1..^𝑖)) ↔ (¬ 𝑘 ∈ (1..^𝑖) → ¬ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐))
9998imbi2i 338 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℕ → (((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐𝑘 ∈ (1..^𝑖))) ↔ (𝑘 ∈ ℕ → (¬ 𝑘 ∈ (1..^𝑖) → ¬ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐)))
10095, 97, 993bitr4i 305 . . . . . . . . . . . . . 14 ((𝑘 ∈ (ℕ ∖ (1..^𝑖)) → ¬ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐) ↔ (𝑘 ∈ ℕ → (((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐𝑘 ∈ (1..^𝑖))))
101100albii 1820 . . . . . . . . . . . . 13 (∀𝑘(𝑘 ∈ (ℕ ∖ (1..^𝑖)) → ¬ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐) ↔ ∀𝑘(𝑘 ∈ ℕ → (((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐𝑘 ∈ (1..^𝑖))))
102 df-ral 3143 . . . . . . . . . . . . 13 (∀𝑘 ∈ (ℕ ∖ (1..^𝑖)) ¬ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐 ↔ ∀𝑘(𝑘 ∈ (ℕ ∖ (1..^𝑖)) → ¬ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐))
103 vex 3497 . . . . . . . . . . . . . . . 16 𝑐 ∈ V
10463mptiniseg 6093 . . . . . . . . . . . . . . . 16 (𝑐 ∈ V → ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ {𝑐}) = {𝑘 ∈ ℕ ∣ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐})
105103, 104ax-mp 5 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ {𝑐}) = {𝑘 ∈ ℕ ∣ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐}
106105sseq1i 3995 . . . . . . . . . . . . . 14 (((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ {𝑐}) ⊆ (1..^𝑖) ↔ {𝑘 ∈ ℕ ∣ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐} ⊆ (1..^𝑖))
107 rabss 4048 . . . . . . . . . . . . . 14 ({𝑘 ∈ ℕ ∣ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐} ⊆ (1..^𝑖) ↔ ∀𝑘 ∈ ℕ (((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐𝑘 ∈ (1..^𝑖)))
108 df-ral 3143 . . . . . . . . . . . . . 14 (∀𝑘 ∈ ℕ (((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐𝑘 ∈ (1..^𝑖)) ↔ ∀𝑘(𝑘 ∈ ℕ → (((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐𝑘 ∈ (1..^𝑖))))
109106, 107, 1083bitri 299 . . . . . . . . . . . . 13 (((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ {𝑐}) ⊆ (1..^𝑖) ↔ ∀𝑘(𝑘 ∈ ℕ → (((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐𝑘 ∈ (1..^𝑖))))
110101, 102, 1093bitr4i 305 . . . . . . . . . . . 12 (∀𝑘 ∈ (ℕ ∖ (1..^𝑖)) ¬ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐 ↔ ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ {𝑐}) ⊆ (1..^𝑖))
111 fzofi 13343 . . . . . . . . . . . . 13 (1..^𝑖) ∈ Fin
112 ssfi 8738 . . . . . . . . . . . . 13 (((1..^𝑖) ∈ Fin ∧ ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ {𝑐}) ⊆ (1..^𝑖)) → ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ {𝑐}) ∈ Fin)
113111, 112mpan 688 . . . . . . . . . . . 12 (((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ {𝑐}) ⊆ (1..^𝑖) → ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ {𝑐}) ∈ Fin)
114110, 113sylbi 219 . . . . . . . . . . 11 (∀𝑘 ∈ (ℕ ∖ (1..^𝑖)) ¬ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐 → ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ {𝑐}) ∈ Fin)
11594, 114syl6 35 . . . . . . . . . 10 (𝑖 ∈ ℕ → (∀𝑘 ∈ (ℤ𝑖) ¬ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐 → ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ {𝑐}) ∈ Fin))
116115rexlimiv 3280 . . . . . . . . 9 (∃𝑖 ∈ ℕ ∀𝑘 ∈ (ℤ𝑖) ¬ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐 → ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ {𝑐}) ∈ Fin)
117116ralimi 3160 . . . . . . . 8 (∀𝑐 ∈ ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})))∃𝑖 ∈ ℕ ∀𝑘 ∈ (ℤ𝑖) ¬ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐 → ∀𝑐 ∈ ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})))((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ {𝑐}) ∈ Fin)
11879, 117sylbir 237 . . . . . . 7 (¬ ∃𝑐 ∈ ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})))∀𝑖 ∈ ℕ ∃𝑘 ∈ (ℤ𝑖)((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐 → ∀𝑐 ∈ ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})))((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ {𝑐}) ∈ Fin)
119 iunfi 8812 . . . . . . . 8 ((ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∈ Fin ∧ ∀𝑐 ∈ ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})))((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ {𝑐}) ∈ Fin) → 𝑐 ∈ ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})))((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ {𝑐}) ∈ Fin)
120119ex 415 . . . . . . 7 (ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∈ Fin → (∀𝑐 ∈ ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})))((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ {𝑐}) ∈ Fin → 𝑐 ∈ ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})))((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ {𝑐}) ∈ Fin))
121118, 120syl5 34 . . . . . 6 (ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∈ Fin → (¬ ∃𝑐 ∈ ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})))∀𝑖 ∈ ℕ ∃𝑘 ∈ (ℤ𝑖)((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐 𝑐 ∈ ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})))((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ {𝑐}) ∈ Fin))
12272, 121mt3i 151 . . . . 5 (ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∈ Fin → ∃𝑐 ∈ ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})))∀𝑖 ∈ ℕ ∃𝑘 ∈ (ℤ𝑖)((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐)
123 ssrexv 4034 . . . . 5 (ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ⊆ 𝐼 → (∃𝑐 ∈ ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})))∀𝑖 ∈ ℕ ∃𝑘 ∈ (ℤ𝑖)((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐 → ∃𝑐𝐼𝑖 ∈ ℕ ∃𝑘 ∈ (ℤ𝑖)((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐))
12454, 122, 123syl2im 40 . . . 4 (𝜑 → (ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∈ Fin → ∃𝑐𝐼𝑖 ∈ ℕ ∃𝑘 ∈ (ℤ𝑖)((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐))
125 unitssre 12886 . . . . . . . . . . . 12 (0[,]1) ⊆ ℝ
126 elmapi 8428 . . . . . . . . . . . . . 14 (𝑐 ∈ ((0[,]1) ↑m (1...𝑁)) → 𝑐:(1...𝑁)⟶(0[,]1))
127126, 46eleq2s 2931 . . . . . . . . . . . . 13 (𝑐𝐼𝑐:(1...𝑁)⟶(0[,]1))
128127ffvelrnda 6851 . . . . . . . . . . . 12 ((𝑐𝐼𝑚 ∈ (1...𝑁)) → (𝑐𝑚) ∈ (0[,]1))
129125, 128sseldi 3965 . . . . . . . . . . 11 ((𝑐𝐼𝑚 ∈ (1...𝑁)) → (𝑐𝑚) ∈ ℝ)
130 nnrp 12401 . . . . . . . . . . . 12 (𝑖 ∈ ℕ → 𝑖 ∈ ℝ+)
131130rpreccld 12442 . . . . . . . . . . 11 (𝑖 ∈ ℕ → (1 / 𝑖) ∈ ℝ+)
132 eqid 2821 . . . . . . . . . . . . 13 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
133132rexmet 23399 . . . . . . . . . . . 12 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ)
134 blcntr 23023 . . . . . . . . . . . 12 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ (𝑐𝑚) ∈ ℝ ∧ (1 / 𝑖) ∈ ℝ+) → (𝑐𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)))
135133, 134mp3an1 1444 . . . . . . . . . . 11 (((𝑐𝑚) ∈ ℝ ∧ (1 / 𝑖) ∈ ℝ+) → (𝑐𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)))
136129, 131, 135syl2an 597 . . . . . . . . . 10 (((𝑐𝐼𝑚 ∈ (1...𝑁)) ∧ 𝑖 ∈ ℕ) → (𝑐𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)))
137136an32s 650 . . . . . . . . 9 (((𝑐𝐼𝑖 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑁)) → (𝑐𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)))
138 fveq1 6669 . . . . . . . . . 10 (((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐 → (((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))‘𝑚) = (𝑐𝑚))
139138eleq1d 2897 . . . . . . . . 9 (((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐 → ((((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ↔ (𝑐𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖))))
140137, 139syl5ibrcom 249 . . . . . . . 8 (((𝑐𝐼𝑖 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑁)) → (((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐 → (((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖))))
141140ralrimdva 3189 . . . . . . 7 ((𝑐𝐼𝑖 ∈ ℕ) → (((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐 → ∀𝑚 ∈ (1...𝑁)(((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖))))
142141reximdv 3273 . . . . . 6 ((𝑐𝐼𝑖 ∈ ℕ) → (∃𝑘 ∈ (ℤ𝑖)((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐 → ∃𝑘 ∈ (ℤ𝑖)∀𝑚 ∈ (1...𝑁)(((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖))))
143142ralimdva 3177 . . . . 5 (𝑐𝐼 → (∀𝑖 ∈ ℕ ∃𝑘 ∈ (ℤ𝑖)((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐 → ∀𝑖 ∈ ℕ ∃𝑘 ∈ (ℤ𝑖)∀𝑚 ∈ (1...𝑁)(((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖))))
144143reximia 3242 . . . 4 (∃𝑐𝐼𝑖 ∈ ℕ ∃𝑘 ∈ (ℤ𝑖)((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})) = 𝑐 → ∃𝑐𝐼𝑖 ∈ ℕ ∃𝑘 ∈ (ℤ𝑖)∀𝑚 ∈ (1...𝑁)(((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)))
145124, 144syl6 35 . . 3 (𝜑 → (ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∈ Fin → ∃𝑐𝐼𝑖 ∈ ℕ ∃𝑘 ∈ (ℤ𝑖)∀𝑚 ∈ (1...𝑁)(((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖))))
146 poimir.r . . . . . . . 8 𝑅 = (∏t‘((1...𝑁) × {(topGen‘ran (,))}))
14749, 48ixpconst 8471 . . . . . . . . 9 X𝑛 ∈ (1...𝑁)(0[,]1) = ((0[,]1) ↑m (1...𝑁))
14846, 147eqtr4i 2847 . . . . . . . 8 𝐼 = X𝑛 ∈ (1...𝑁)(0[,]1)
149146, 148oveq12i 7168 . . . . . . 7 (𝑅t 𝐼) = ((∏t‘((1...𝑁) × {(topGen‘ran (,))})) ↾t X𝑛 ∈ (1...𝑁)(0[,]1))
150 fzfid 13342 . . . . . . . . 9 (⊤ → (1...𝑁) ∈ Fin)
151 retop 23370 . . . . . . . . . . 11 (topGen‘ran (,)) ∈ Top
152151fconst6 6569 . . . . . . . . . 10 ((1...𝑁) × {(topGen‘ran (,))}):(1...𝑁)⟶Top
153152a1i 11 . . . . . . . . 9 (⊤ → ((1...𝑁) × {(topGen‘ran (,))}):(1...𝑁)⟶Top)
15448a1i 11 . . . . . . . . 9 ((⊤ ∧ 𝑛 ∈ (1...𝑁)) → (0[,]1) ∈ V)
155150, 153, 154ptrest 34906 . . . . . . . 8 (⊤ → ((∏t‘((1...𝑁) × {(topGen‘ran (,))})) ↾t X𝑛 ∈ (1...𝑁)(0[,]1)) = (∏t‘(𝑛 ∈ (1...𝑁) ↦ ((((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ↾t (0[,]1)))))
156155mptru 1544 . . . . . . 7 ((∏t‘((1...𝑁) × {(topGen‘ran (,))})) ↾t X𝑛 ∈ (1...𝑁)(0[,]1)) = (∏t‘(𝑛 ∈ (1...𝑁) ↦ ((((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ↾t (0[,]1))))
157 fvex 6683 . . . . . . . . . . . 12 (topGen‘ran (,)) ∈ V
158157fvconst2 6966 . . . . . . . . . . 11 (𝑛 ∈ (1...𝑁) → (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) = (topGen‘ran (,)))
159158oveq1d 7171 . . . . . . . . . 10 (𝑛 ∈ (1...𝑁) → ((((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ↾t (0[,]1)) = ((topGen‘ran (,)) ↾t (0[,]1)))
160159mpteq2ia 5157 . . . . . . . . 9 (𝑛 ∈ (1...𝑁) ↦ ((((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ↾t (0[,]1))) = (𝑛 ∈ (1...𝑁) ↦ ((topGen‘ran (,)) ↾t (0[,]1)))
161 fconstmpt 5614 . . . . . . . . 9 ((1...𝑁) × {((topGen‘ran (,)) ↾t (0[,]1))}) = (𝑛 ∈ (1...𝑁) ↦ ((topGen‘ran (,)) ↾t (0[,]1)))
162160, 161eqtr4i 2847 . . . . . . . 8 (𝑛 ∈ (1...𝑁) ↦ ((((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ↾t (0[,]1))) = ((1...𝑁) × {((topGen‘ran (,)) ↾t (0[,]1))})
163162fveq2i 6673 . . . . . . 7 (∏t‘(𝑛 ∈ (1...𝑁) ↦ ((((1...𝑁) × {(topGen‘ran (,))})‘𝑛) ↾t (0[,]1)))) = (∏t‘((1...𝑁) × {((topGen‘ran (,)) ↾t (0[,]1))}))
164149, 156, 1633eqtri 2848 . . . . . 6 (𝑅t 𝐼) = (∏t‘((1...𝑁) × {((topGen‘ran (,)) ↾t (0[,]1))}))
165 fzfi 13341 . . . . . . 7 (1...𝑁) ∈ Fin
166 dfii2 23490 . . . . . . . . 9 II = ((topGen‘ran (,)) ↾t (0[,]1))
167 iicmp 23494 . . . . . . . . 9 II ∈ Comp
168166, 167eqeltrri 2910 . . . . . . . 8 ((topGen‘ran (,)) ↾t (0[,]1)) ∈ Comp
169168fconst6 6569 . . . . . . 7 ((1...𝑁) × {((topGen‘ran (,)) ↾t (0[,]1))}):(1...𝑁)⟶Comp
170 ptcmpfi 22421 . . . . . . 7 (((1...𝑁) ∈ Fin ∧ ((1...𝑁) × {((topGen‘ran (,)) ↾t (0[,]1))}):(1...𝑁)⟶Comp) → (∏t‘((1...𝑁) × {((topGen‘ran (,)) ↾t (0[,]1))})) ∈ Comp)
171165, 169, 170mp2an 690 . . . . . 6 (∏t‘((1...𝑁) × {((topGen‘ran (,)) ↾t (0[,]1))})) ∈ Comp
172164, 171eqeltri 2909 . . . . 5 (𝑅t 𝐼) ∈ Comp
173 rehaus 23407 . . . . . . . . . . . 12 (topGen‘ran (,)) ∈ Haus
174173fconst6 6569 . . . . . . . . . . 11 ((1...𝑁) × {(topGen‘ran (,))}):(1...𝑁)⟶Haus
175 pthaus 22246 . . . . . . . . . . 11 (((1...𝑁) ∈ Fin ∧ ((1...𝑁) × {(topGen‘ran (,))}):(1...𝑁)⟶Haus) → (∏t‘((1...𝑁) × {(topGen‘ran (,))})) ∈ Haus)
176165, 174, 175mp2an 690 . . . . . . . . . 10 (∏t‘((1...𝑁) × {(topGen‘ran (,))})) ∈ Haus
177146, 176eqeltri 2909 . . . . . . . . 9 𝑅 ∈ Haus
178 haustop 21939 . . . . . . . . 9 (𝑅 ∈ Haus → 𝑅 ∈ Top)
179177, 178ax-mp 5 . . . . . . . 8 𝑅 ∈ Top
180 reex 10628 . . . . . . . . . 10 ℝ ∈ V
181 mapss 8453 . . . . . . . . . 10 ((ℝ ∈ V ∧ (0[,]1) ⊆ ℝ) → ((0[,]1) ↑m (1...𝑁)) ⊆ (ℝ ↑m (1...𝑁)))
182180, 125, 181mp2an 690 . . . . . . . . 9 ((0[,]1) ↑m (1...𝑁)) ⊆ (ℝ ↑m (1...𝑁))
18346, 182eqsstri 4001 . . . . . . . 8 𝐼 ⊆ (ℝ ↑m (1...𝑁))
184 uniretop 23371 . . . . . . . . . . 11 ℝ = (topGen‘ran (,))
185146, 184ptuniconst 22206 . . . . . . . . . 10 (((1...𝑁) ∈ Fin ∧ (topGen‘ran (,)) ∈ Top) → (ℝ ↑m (1...𝑁)) = 𝑅)
186165, 151, 185mp2an 690 . . . . . . . . 9 (ℝ ↑m (1...𝑁)) = 𝑅
187186restuni 21770 . . . . . . . 8 ((𝑅 ∈ Top ∧ 𝐼 ⊆ (ℝ ↑m (1...𝑁))) → 𝐼 = (𝑅t 𝐼))
188179, 183, 187mp2an 690 . . . . . . 7 𝐼 = (𝑅t 𝐼)
189188bwth 22018 . . . . . 6 (((𝑅t 𝐼) ∈ Comp ∧ ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ⊆ 𝐼 ∧ ¬ ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∈ Fin) → ∃𝑐𝐼 𝑐 ∈ ((limPt‘(𝑅t 𝐼))‘ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})))))
1901893expia 1117 . . . . 5 (((𝑅t 𝐼) ∈ Comp ∧ ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ⊆ 𝐼) → (¬ ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∈ Fin → ∃𝑐𝐼 𝑐 ∈ ((limPt‘(𝑅t 𝐼))‘ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))))))
191172, 54, 190sylancr 589 . . . 4 (𝜑 → (¬ ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∈ Fin → ∃𝑐𝐼 𝑐 ∈ ((limPt‘(𝑅t 𝐼))‘ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))))))
192 cmptop 22003 . . . . . . . . 9 ((𝑅t 𝐼) ∈ Comp → (𝑅t 𝐼) ∈ Top)
193172, 192ax-mp 5 . . . . . . . 8 (𝑅t 𝐼) ∈ Top
194188islp3 21754 . . . . . . . 8 (((𝑅t 𝐼) ∈ Top ∧ ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ⊆ 𝐼𝑐𝐼) → (𝑐 ∈ ((limPt‘(𝑅t 𝐼))‘ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})))) ↔ ∀𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 → (𝑣 ∩ (ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∖ {𝑐})) ≠ ∅)))
195193, 194mp3an1 1444 . . . . . . 7 ((ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ⊆ 𝐼𝑐𝐼) → (𝑐 ∈ ((limPt‘(𝑅t 𝐼))‘ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})))) ↔ ∀𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 → (𝑣 ∩ (ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∖ {𝑐})) ≠ ∅)))
19654, 195sylan 582 . . . . . 6 ((𝜑𝑐𝐼) → (𝑐 ∈ ((limPt‘(𝑅t 𝐼))‘ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})))) ↔ ∀𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 → (𝑣 ∩ (ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∖ {𝑐})) ≠ ∅)))
197 fzfid 13342 . . . . . . . . . . . . 13 ((𝑐𝐼𝑖 ∈ ℕ) → (1...𝑁) ∈ Fin)
198152a1i 11 . . . . . . . . . . . . 13 ((𝑐𝐼𝑖 ∈ ℕ) → ((1...𝑁) × {(topGen‘ran (,))}):(1...𝑁)⟶Top)
199 nnrecre 11680 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ ℕ → (1 / 𝑖) ∈ ℝ)
200199rexrd 10691 . . . . . . . . . . . . . . . 16 (𝑖 ∈ ℕ → (1 / 𝑖) ∈ ℝ*)
201 eqid 2821 . . . . . . . . . . . . . . . . . . 19 (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
202132, 201tgioo 23404 . . . . . . . . . . . . . . . . . 18 (topGen‘ran (,)) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
203202blopn 23110 . . . . . . . . . . . . . . . . 17 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ (𝑐𝑚) ∈ ℝ ∧ (1 / 𝑖) ∈ ℝ*) → ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ∈ (topGen‘ran (,)))
204133, 203mp3an1 1444 . . . . . . . . . . . . . . . 16 (((𝑐𝑚) ∈ ℝ ∧ (1 / 𝑖) ∈ ℝ*) → ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ∈ (topGen‘ran (,)))
205129, 200, 204syl2an 597 . . . . . . . . . . . . . . 15 (((𝑐𝐼𝑚 ∈ (1...𝑁)) ∧ 𝑖 ∈ ℕ) → ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ∈ (topGen‘ran (,)))
206205an32s 650 . . . . . . . . . . . . . 14 (((𝑐𝐼𝑖 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑁)) → ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ∈ (topGen‘ran (,)))
207157fvconst2 6966 . . . . . . . . . . . . . . 15 (𝑚 ∈ (1...𝑁) → (((1...𝑁) × {(topGen‘ran (,))})‘𝑚) = (topGen‘ran (,)))
208207adantl 484 . . . . . . . . . . . . . 14 (((𝑐𝐼𝑖 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑁)) → (((1...𝑁) × {(topGen‘ran (,))})‘𝑚) = (topGen‘ran (,)))
209206, 208eleqtrrd 2916 . . . . . . . . . . . . 13 (((𝑐𝐼𝑖 ∈ ℕ) ∧ 𝑚 ∈ (1...𝑁)) → ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ∈ (((1...𝑁) × {(topGen‘ran (,))})‘𝑚))
210 noel 4296 . . . . . . . . . . . . . . . 16 ¬ 𝑚 ∈ ∅
211 difid 4330 . . . . . . . . . . . . . . . . 17 ((1...𝑁) ∖ (1...𝑁)) = ∅
212211eleq2i 2904 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ((1...𝑁) ∖ (1...𝑁)) ↔ 𝑚 ∈ ∅)
213210, 212mtbir 325 . . . . . . . . . . . . . . 15 ¬ 𝑚 ∈ ((1...𝑁) ∖ (1...𝑁))
214213pm2.21i 119 . . . . . . . . . . . . . 14 (𝑚 ∈ ((1...𝑁) ∖ (1...𝑁)) → ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) = (((1...𝑁) × {(topGen‘ran (,))})‘𝑚))
215214adantl 484 . . . . . . . . . . . . 13 (((𝑐𝐼𝑖 ∈ ℕ) ∧ 𝑚 ∈ ((1...𝑁) ∖ (1...𝑁))) → ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) = (((1...𝑁) × {(topGen‘ran (,))})‘𝑚))
216197, 198, 197, 209, 215ptopn 22191 . . . . . . . . . . . 12 ((𝑐𝐼𝑖 ∈ ℕ) → X𝑚 ∈ (1...𝑁)((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ∈ (∏t‘((1...𝑁) × {(topGen‘ran (,))})))
217216, 146eleqtrrdi 2924 . . . . . . . . . . 11 ((𝑐𝐼𝑖 ∈ ℕ) → X𝑚 ∈ (1...𝑁)((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ∈ 𝑅)
218 ovex 7189 . . . . . . . . . . . . 13 ((0[,]1) ↑m (1...𝑁)) ∈ V
21946, 218eqeltri 2909 . . . . . . . . . . . 12 𝐼 ∈ V
220 elrestr 16702 . . . . . . . . . . . 12 ((𝑅 ∈ Haus ∧ 𝐼 ∈ V ∧ X𝑚 ∈ (1...𝑁)((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ∈ 𝑅) → (X𝑚 ∈ (1...𝑁)((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∈ (𝑅t 𝐼))
221177, 219, 220mp3an12 1447 . . . . . . . . . . 11 (X𝑚 ∈ (1...𝑁)((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ∈ 𝑅 → (X𝑚 ∈ (1...𝑁)((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∈ (𝑅t 𝐼))
222217, 221syl 17 . . . . . . . . . 10 ((𝑐𝐼𝑖 ∈ ℕ) → (X𝑚 ∈ (1...𝑁)((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∈ (𝑅t 𝐼))
223 difss 4108 . . . . . . . . . . . . 13 (((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐}) ⊆ ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖))
224 imassrn 5940 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ⊆ ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})))
225223, 224sstri 3976 . . . . . . . . . . . 12 (((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐}) ⊆ ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})))
226225, 54sstrid 3978 . . . . . . . . . . 11 (𝜑 → (((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐}) ⊆ 𝐼)
227 haust1 21960 . . . . . . . . . . . . . 14 (𝑅 ∈ Haus → 𝑅 ∈ Fre)
228177, 227ax-mp 5 . . . . . . . . . . . . 13 𝑅 ∈ Fre
229 restt1 21975 . . . . . . . . . . . . 13 ((𝑅 ∈ Fre ∧ 𝐼 ∈ V) → (𝑅t 𝐼) ∈ Fre)
230228, 219, 229mp2an 690 . . . . . . . . . . . 12 (𝑅t 𝐼) ∈ Fre
231 funmpt 6393 . . . . . . . . . . . . . 14 Fun (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})))
232 imafi 8817 . . . . . . . . . . . . . 14 ((Fun (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∧ (1..^𝑖) ∈ Fin) → ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∈ Fin)
233231, 111, 232mp2an 690 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∈ Fin
234 diffi 8750 . . . . . . . . . . . . 13 (((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∈ Fin → (((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐}) ∈ Fin)
235233, 234ax-mp 5 . . . . . . . . . . . 12 (((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐}) ∈ Fin
236188t1ficld 21935 . . . . . . . . . . . 12 (((𝑅t 𝐼) ∈ Fre ∧ (((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐}) ⊆ 𝐼 ∧ (((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐}) ∈ Fin) → (((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐}) ∈ (Clsd‘(𝑅t 𝐼)))
237230, 235, 236mp3an13 1448 . . . . . . . . . . 11 ((((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐}) ⊆ 𝐼 → (((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐}) ∈ (Clsd‘(𝑅t 𝐼)))
238226, 237syl 17 . . . . . . . . . 10 (𝜑 → (((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐}) ∈ (Clsd‘(𝑅t 𝐼)))
239188difopn 21642 . . . . . . . . . 10 (((X𝑚 ∈ (1...𝑁)((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∈ (𝑅t 𝐼) ∧ (((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐}) ∈ (Clsd‘(𝑅t 𝐼))) → ((X𝑚 ∈ (1...𝑁)((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ∈ (𝑅t 𝐼))
240222, 238, 239syl2anr 598 . . . . . . . . 9 ((𝜑 ∧ (𝑐𝐼𝑖 ∈ ℕ)) → ((X𝑚 ∈ (1...𝑁)((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ∈ (𝑅t 𝐼))
241240anassrs 470 . . . . . . . 8 (((𝜑𝑐𝐼) ∧ 𝑖 ∈ ℕ) → ((X𝑚 ∈ (1...𝑁)((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ∈ (𝑅t 𝐼))
242 eleq2 2901 . . . . . . . . . . 11 (𝑣 = ((X𝑚 ∈ (1...𝑁)((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) → (𝑐𝑣𝑐 ∈ ((X𝑚 ∈ (1...𝑁)((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐}))))
243 ineq1 4181 . . . . . . . . . . . 12 (𝑣 = ((X𝑚 ∈ (1...𝑁)((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) → (𝑣 ∩ (ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∖ {𝑐})) = (((X𝑚 ∈ (1...𝑁)((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ∩ (ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∖ {𝑐})))
244243neeq1d 3075 . . . . . . . . . . 11 (𝑣 = ((X𝑚 ∈ (1...𝑁)((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) → ((𝑣 ∩ (ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∖ {𝑐})) ≠ ∅ ↔ (((X𝑚 ∈ (1...𝑁)((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ∩ (ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∖ {𝑐})) ≠ ∅))
245242, 244imbi12d 347 . . . . . . . . . 10 (𝑣 = ((X𝑚 ∈ (1...𝑁)((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) → ((𝑐𝑣 → (𝑣 ∩ (ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∖ {𝑐})) ≠ ∅) ↔ (𝑐 ∈ ((X𝑚 ∈ (1...𝑁)((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) → (((X𝑚 ∈ (1...𝑁)((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ∩ (ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∖ {𝑐})) ≠ ∅)))
246245rspcva 3621 . . . . . . . . 9 ((((X𝑚 ∈ (1...𝑁)((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ∈ (𝑅t 𝐼) ∧ ∀𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 → (𝑣 ∩ (ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∖ {𝑐})) ≠ ∅)) → (𝑐 ∈ ((X𝑚 ∈ (1...𝑁)((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) → (((X𝑚 ∈ (1...𝑁)((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ∩ (ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∖ {𝑐})) ≠ ∅))
247127ffnd 6515 . . . . . . . . . . . . . . 15 (𝑐𝐼𝑐 Fn (1...𝑁))
248247adantr 483 . . . . . . . . . . . . . 14 ((𝑐𝐼𝑖 ∈ ℕ) → 𝑐 Fn (1...𝑁))
249137ralrimiva 3182 . . . . . . . . . . . . . 14 ((𝑐𝐼𝑖 ∈ ℕ) → ∀𝑚 ∈ (1...𝑁)(𝑐𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)))
250103elixp 8468 . . . . . . . . . . . . . 14 (𝑐X𝑚 ∈ (1...𝑁)((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ↔ (𝑐 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑐𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖))))
251248, 249, 250sylanbrc 585 . . . . . . . . . . . . 13 ((𝑐𝐼𝑖 ∈ ℕ) → 𝑐X𝑚 ∈ (1...𝑁)((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)))
252 simpl 485 . . . . . . . . . . . . 13 ((𝑐𝐼𝑖 ∈ ℕ) → 𝑐𝐼)
253251, 252elind 4171 . . . . . . . . . . . 12 ((𝑐𝐼𝑖 ∈ ℕ) → 𝑐 ∈ (X𝑚 ∈ (1...𝑁)((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼))
254 neldifsnd 4726 . . . . . . . . . . . 12 ((𝑐𝐼𝑖 ∈ ℕ) → ¬ 𝑐 ∈ (((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐}))
255253, 254eldifd 3947 . . . . . . . . . . 11 ((𝑐𝐼𝑖 ∈ ℕ) → 𝑐 ∈ ((X𝑚 ∈ (1...𝑁)((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})))
256255adantll 712 . . . . . . . . . 10 (((𝜑𝑐𝐼) ∧ 𝑖 ∈ ℕ) → 𝑐 ∈ ((X𝑚 ∈ (1...𝑁)((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})))
257 simplr 767 . . . . . . . . . . . . . . . . 17 (((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗𝐼) → ∀𝑚 ∈ (1...𝑁)(𝑗𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)))
258257anim1i 616 . . . . . . . . . . . . . . . 16 ((((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗𝐼) ∧ ¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖))) → (∀𝑚 ∈ (1...𝑁)(𝑗𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ∧ ¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖))))
259 simpl 485 . . . . . . . . . . . . . . . 16 ((𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∧ ¬ 𝑗 ∈ {𝑐}) → 𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))))
260258, 259anim12i 614 . . . . . . . . . . . . . . 15 (((((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗𝐼) ∧ ¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖))) ∧ (𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∧ ¬ 𝑗 ∈ {𝑐})) → ((∀𝑚 ∈ (1...𝑁)(𝑗𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ∧ ¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖))) ∧ 𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})))))
261 elin 4169 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (((X𝑚 ∈ (1...𝑁)((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ∩ (ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∖ {𝑐})) ↔ (𝑗 ∈ ((X𝑚 ∈ (1...𝑁)((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ∧ 𝑗 ∈ (ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∖ {𝑐})))
262 andir 1005 . . . . . . . . . . . . . . . . 17 ((((((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗𝐼) ∧ ¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖))) ∨ (((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗𝐼) ∧ ¬ ¬ 𝑗 ∈ {𝑐})) ∧ (𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∧ ¬ 𝑗 ∈ {𝑐})) ↔ (((((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗𝐼) ∧ ¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖))) ∧ (𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∧ ¬ 𝑗 ∈ {𝑐})) ∨ ((((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗𝐼) ∧ ¬ ¬ 𝑗 ∈ {𝑐}) ∧ (𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∧ ¬ 𝑗 ∈ {𝑐}))))
263 eldif 3946 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ((X𝑚 ∈ (1...𝑁)((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ↔ (𝑗 ∈ (X𝑚 ∈ (1...𝑁)((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∧ ¬ 𝑗 ∈ (((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})))
264 elin 4169 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ (X𝑚 ∈ (1...𝑁)((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ↔ (𝑗X𝑚 ∈ (1...𝑁)((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ∧ 𝑗𝐼))
265 vex 3497 . . . . . . . . . . . . . . . . . . . . . . 23 𝑗 ∈ V
266265elixp 8468 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗X𝑚 ∈ (1...𝑁)((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ↔ (𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖))))
267266anbi1i 625 . . . . . . . . . . . . . . . . . . . . 21 ((𝑗X𝑚 ∈ (1...𝑁)((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ∧ 𝑗𝐼) ↔ ((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗𝐼))
268264, 267bitri 277 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ (X𝑚 ∈ (1...𝑁)((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ↔ ((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗𝐼))
269 ianor 978 . . . . . . . . . . . . . . . . . . . . 21 (¬ (𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∧ ¬ 𝑗 ∈ {𝑐}) ↔ (¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∨ ¬ ¬ 𝑗 ∈ {𝑐}))
270 eldif 3946 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 ∈ (((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐}) ↔ (𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∧ ¬ 𝑗 ∈ {𝑐}))
271269, 270xchnxbir 335 . . . . . . . . . . . . . . . . . . . 20 𝑗 ∈ (((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐}) ↔ (¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∨ ¬ ¬ 𝑗 ∈ {𝑐}))
272268, 271anbi12i 628 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ (X𝑚 ∈ (1...𝑁)((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∧ ¬ 𝑗 ∈ (((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ↔ (((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗𝐼) ∧ (¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∨ ¬ ¬ 𝑗 ∈ {𝑐})))
273 andi 1004 . . . . . . . . . . . . . . . . . . 19 ((((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗𝐼) ∧ (¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∨ ¬ ¬ 𝑗 ∈ {𝑐})) ↔ ((((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗𝐼) ∧ ¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖))) ∨ (((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗𝐼) ∧ ¬ ¬ 𝑗 ∈ {𝑐})))
274263, 272, 2733bitri 299 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ((X𝑚 ∈ (1...𝑁)((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ↔ ((((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗𝐼) ∧ ¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖))) ∨ (((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗𝐼) ∧ ¬ ¬ 𝑗 ∈ {𝑐})))
275 eldif 3946 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∖ {𝑐}) ↔ (𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∧ ¬ 𝑗 ∈ {𝑐}))
276274, 275anbi12i 628 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ ((X𝑚 ∈ (1...𝑁)((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ∧ 𝑗 ∈ (ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∖ {𝑐})) ↔ (((((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗𝐼) ∧ ¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖))) ∨ (((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗𝐼) ∧ ¬ ¬ 𝑗 ∈ {𝑐})) ∧ (𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∧ ¬ 𝑗 ∈ {𝑐})))
277 pm3.24 405 . . . . . . . . . . . . . . . . . . 19 ¬ (¬ 𝑗 ∈ {𝑐} ∧ ¬ ¬ 𝑗 ∈ {𝑐})
278 simpr 487 . . . . . . . . . . . . . . . . . . . 20 ((((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗𝐼) ∧ ¬ ¬ 𝑗 ∈ {𝑐}) → ¬ ¬ 𝑗 ∈ {𝑐})
279 simpr 487 . . . . . . . . . . . . . . . . . . . 20 ((𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∧ ¬ 𝑗 ∈ {𝑐}) → ¬ 𝑗 ∈ {𝑐})
280278, 279anim12ci 615 . . . . . . . . . . . . . . . . . . 19 (((((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗𝐼) ∧ ¬ ¬ 𝑗 ∈ {𝑐}) ∧ (𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∧ ¬ 𝑗 ∈ {𝑐})) → (¬ 𝑗 ∈ {𝑐} ∧ ¬ ¬ 𝑗 ∈ {𝑐}))
281277, 280mto 199 . . . . . . . . . . . . . . . . . 18 ¬ ((((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗𝐼) ∧ ¬ ¬ 𝑗 ∈ {𝑐}) ∧ (𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∧ ¬ 𝑗 ∈ {𝑐}))
282281biorfi 935 . . . . . . . . . . . . . . . . 17 (((((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗𝐼) ∧ ¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖))) ∧ (𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∧ ¬ 𝑗 ∈ {𝑐})) ↔ (((((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗𝐼) ∧ ¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖))) ∧ (𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∧ ¬ 𝑗 ∈ {𝑐})) ∨ ((((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗𝐼) ∧ ¬ ¬ 𝑗 ∈ {𝑐}) ∧ (𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∧ ¬ 𝑗 ∈ {𝑐}))))
283262, 276, 2823bitr4i 305 . . . . . . . . . . . . . . . 16 ((𝑗 ∈ ((X𝑚 ∈ (1...𝑁)((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ∧ 𝑗 ∈ (ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∖ {𝑐})) ↔ ((((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗𝐼) ∧ ¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖))) ∧ (𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∧ ¬ 𝑗 ∈ {𝑐})))
284261, 283bitri 277 . . . . . . . . . . . . . . 15 (𝑗 ∈ (((X𝑚 ∈ (1...𝑁)((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ∩ (ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∖ {𝑐})) ↔ ((((𝑗 Fn (1...𝑁) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖))) ∧ 𝑗𝐼) ∧ ¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖))) ∧ (𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∧ ¬ 𝑗 ∈ {𝑐})))
285 ancom 463 . . . . . . . . . . . . . . . 16 (((¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∧ 𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})))) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖))) ↔ (∀𝑚 ∈ (1...𝑁)(𝑗𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ∧ (¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∧ 𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))))))
286 anass 471 . . . . . . . . . . . . . . . 16 (((∀𝑚 ∈ (1...𝑁)(𝑗𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ∧ ¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖))) ∧ 𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})))) ↔ (∀𝑚 ∈ (1...𝑁)(𝑗𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ∧ (¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∧ 𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))))))
287285, 286bitr4i 280 . . . . . . . . . . . . . . 15 (((¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∧ 𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})))) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖))) ↔ ((∀𝑚 ∈ (1...𝑁)(𝑗𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ∧ ¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖))) ∧ 𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})))))
288260, 284, 2873imtr4i 294 . . . . . . . . . . . . . 14 (𝑗 ∈ (((X𝑚 ∈ (1...𝑁)((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ∩ (ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∖ {𝑐})) → ((¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∧ 𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})))) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖))))
289 ancom 463 . . . . . . . . . . . . . . . . 17 ((¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∧ 𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})))) ↔ (𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∧ ¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖))))
290 eldif 3946 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∖ ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖))) ↔ (𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∧ ¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖))))
291289, 290bitr4i 280 . . . . . . . . . . . . . . . 16 ((¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∧ 𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})))) ↔ 𝑗 ∈ (ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∖ ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖))))
292 imadmrn 5939 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ dom (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})))) = ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})))
29362, 63dmmpti 6492 . . . . . . . . . . . . . . . . . . . . . 22 dom (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) = ℕ
294293imaeq2i 5927 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ dom (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})))) = ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ ℕ)
295292, 294eqtr3i 2846 . . . . . . . . . . . . . . . . . . . 20 ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) = ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ ℕ)
296295difeq1i 4095 . . . . . . . . . . . . . . . . . . 19 (ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∖ ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖))) = (((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ ℕ) ∖ ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)))
297 imadifss 34882 . . . . . . . . . . . . . . . . . . 19 (((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ ℕ) ∖ ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖))) ⊆ ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (ℕ ∖ (1..^𝑖)))
298296, 297eqsstri 4001 . . . . . . . . . . . . . . . . . 18 (ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∖ ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖))) ⊆ ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (ℕ ∖ (1..^𝑖)))
299 imass2 5965 . . . . . . . . . . . . . . . . . . . 20 ((ℕ ∖ (1..^𝑖)) ⊆ (ℤ𝑖) → ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (ℕ ∖ (1..^𝑖))) ⊆ ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (ℤ𝑖)))
30092, 299syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ ℕ → ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (ℕ ∖ (1..^𝑖))) ⊆ ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (ℤ𝑖)))
301 df-ima 5568 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (ℤ𝑖)) = ran ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ↾ (ℤ𝑖))
302 uznnssnn 12296 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 ∈ ℕ → (ℤ𝑖) ⊆ ℕ)
303302resmptd 5908 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 ∈ ℕ → ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ↾ (ℤ𝑖)) = (𝑘 ∈ (ℤ𝑖) ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))))
304303rneqd 5808 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ ℕ → ran ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ↾ (ℤ𝑖)) = ran (𝑘 ∈ (ℤ𝑖) ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))))
305301, 304syl5eq 2868 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ ℕ → ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (ℤ𝑖)) = ran (𝑘 ∈ (ℤ𝑖) ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))))
306300, 305sseqtrd 4007 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ ℕ → ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (ℕ ∖ (1..^𝑖))) ⊆ ran (𝑘 ∈ (ℤ𝑖) ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))))
307298, 306sstrid 3978 . . . . . . . . . . . . . . . . 17 (𝑖 ∈ ℕ → (ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∖ ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖))) ⊆ ran (𝑘 ∈ (ℤ𝑖) ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))))
308307sseld 3966 . . . . . . . . . . . . . . . 16 (𝑖 ∈ ℕ → (𝑗 ∈ (ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∖ ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖))) → 𝑗 ∈ ran (𝑘 ∈ (ℤ𝑖) ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})))))
309291, 308syl5bi 244 . . . . . . . . . . . . . . 15 (𝑖 ∈ ℕ → ((¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∧ 𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})))) → 𝑗 ∈ ran (𝑘 ∈ (ℤ𝑖) ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})))))
310309anim1d 612 . . . . . . . . . . . . . 14 (𝑖 ∈ ℕ → (((¬ 𝑗 ∈ ((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∧ 𝑗 ∈ ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})))) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖))) → (𝑗 ∈ ran (𝑘 ∈ (ℤ𝑖) ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)))))
311288, 310syl5 34 . . . . . . . . . . . . 13 (𝑖 ∈ ℕ → (𝑗 ∈ (((X𝑚 ∈ (1...𝑁)((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ∩ (ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∖ {𝑐})) → (𝑗 ∈ ran (𝑘 ∈ (ℤ𝑖) ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)))))
312311eximdv 1918 . . . . . . . . . . . 12 (𝑖 ∈ ℕ → (∃𝑗 𝑗 ∈ (((X𝑚 ∈ (1...𝑁)((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ∩ (ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∖ {𝑐})) → ∃𝑗(𝑗 ∈ ran (𝑘 ∈ (ℤ𝑖) ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)))))
313 n0 4310 . . . . . . . . . . . 12 ((((X𝑚 ∈ (1...𝑁)((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ∩ (ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∖ {𝑐})) ≠ ∅ ↔ ∃𝑗 𝑗 ∈ (((X𝑚 ∈ (1...𝑁)((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ∩ (ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∖ {𝑐})))
31462rgenw 3150 . . . . . . . . . . . . . 14 𝑘 ∈ (ℤ𝑖)((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})) ∈ V
315 eqid 2821 . . . . . . . . . . . . . . 15 (𝑘 ∈ (ℤ𝑖) ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) = (𝑘 ∈ (ℤ𝑖) ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})))
316 fveq1 6669 . . . . . . . . . . . . . . . . 17 (𝑗 = ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})) → (𝑗𝑚) = (((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))‘𝑚))
317316eleq1d 2897 . . . . . . . . . . . . . . . 16 (𝑗 = ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})) → ((𝑗𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ↔ (((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖))))
318317ralbidv 3197 . . . . . . . . . . . . . . 15 (𝑗 = ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})) → (∀𝑚 ∈ (1...𝑁)(𝑗𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ↔ ∀𝑚 ∈ (1...𝑁)(((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖))))
319315, 318rexrnmptw 6861 . . . . . . . . . . . . . 14 (∀𝑘 ∈ (ℤ𝑖)((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})) ∈ V → (∃𝑗 ∈ ran (𝑘 ∈ (ℤ𝑖) ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})))∀𝑚 ∈ (1...𝑁)(𝑗𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ↔ ∃𝑘 ∈ (ℤ𝑖)∀𝑚 ∈ (1...𝑁)(((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖))))
320314, 319ax-mp 5 . . . . . . . . . . . . 13 (∃𝑗 ∈ ran (𝑘 ∈ (ℤ𝑖) ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})))∀𝑚 ∈ (1...𝑁)(𝑗𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ↔ ∃𝑘 ∈ (ℤ𝑖)∀𝑚 ∈ (1...𝑁)(((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)))
321 df-rex 3144 . . . . . . . . . . . . 13 (∃𝑗 ∈ ran (𝑘 ∈ (ℤ𝑖) ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})))∀𝑚 ∈ (1...𝑁)(𝑗𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ↔ ∃𝑗(𝑗 ∈ ran (𝑘 ∈ (ℤ𝑖) ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖))))
322320, 321bitr3i 279 . . . . . . . . . . . 12 (∃𝑘 ∈ (ℤ𝑖)∀𝑚 ∈ (1...𝑁)(((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ↔ ∃𝑗(𝑗 ∈ ran (𝑘 ∈ (ℤ𝑖) ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∧ ∀𝑚 ∈ (1...𝑁)(𝑗𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖))))
323312, 313, 3223imtr4g 298 . . . . . . . . . . 11 (𝑖 ∈ ℕ → ((((X𝑚 ∈ (1...𝑁)((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ∩ (ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∖ {𝑐})) ≠ ∅ → ∃𝑘 ∈ (ℤ𝑖)∀𝑚 ∈ (1...𝑁)(((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖))))
324323adantl 484 . . . . . . . . . 10 (((𝜑𝑐𝐼) ∧ 𝑖 ∈ ℕ) → ((((X𝑚 ∈ (1...𝑁)((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ∩ (ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∖ {𝑐})) ≠ ∅ → ∃𝑘 ∈ (ℤ𝑖)∀𝑚 ∈ (1...𝑁)(((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖))))
325256, 324embantd 59 . . . . . . . . 9 (((𝜑𝑐𝐼) ∧ 𝑖 ∈ ℕ) → ((𝑐 ∈ ((X𝑚 ∈ (1...𝑁)((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) → (((X𝑚 ∈ (1...𝑁)((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ∩ (ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∖ {𝑐})) ≠ ∅) → ∃𝑘 ∈ (ℤ𝑖)∀𝑚 ∈ (1...𝑁)(((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖))))
326246, 325syl5 34 . . . . . . . 8 (((𝜑𝑐𝐼) ∧ 𝑖 ∈ ℕ) → ((((X𝑚 ∈ (1...𝑁)((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) ∩ 𝐼) ∖ (((𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) “ (1..^𝑖)) ∖ {𝑐})) ∈ (𝑅t 𝐼) ∧ ∀𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 → (𝑣 ∩ (ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∖ {𝑐})) ≠ ∅)) → ∃𝑘 ∈ (ℤ𝑖)∀𝑚 ∈ (1...𝑁)(((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖))))
327241, 326mpand 693 . . . . . . 7 (((𝜑𝑐𝐼) ∧ 𝑖 ∈ ℕ) → (∀𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 → (𝑣 ∩ (ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∖ {𝑐})) ≠ ∅) → ∃𝑘 ∈ (ℤ𝑖)∀𝑚 ∈ (1...𝑁)(((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖))))
328327ralrimdva 3189 . . . . . 6 ((𝜑𝑐𝐼) → (∀𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 → (𝑣 ∩ (ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∖ {𝑐})) ≠ ∅) → ∀𝑖 ∈ ℕ ∃𝑘 ∈ (ℤ𝑖)∀𝑚 ∈ (1...𝑁)(((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖))))
329196, 328sylbid 242 . . . . 5 ((𝜑𝑐𝐼) → (𝑐 ∈ ((limPt‘(𝑅t 𝐼))‘ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})))) → ∀𝑖 ∈ ℕ ∃𝑘 ∈ (ℤ𝑖)∀𝑚 ∈ (1...𝑁)(((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖))))
330329reximdva 3274 . . . 4 (𝜑 → (∃𝑐𝐼 𝑐 ∈ ((limPt‘(𝑅t 𝐼))‘ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘})))) → ∃𝑐𝐼𝑖 ∈ ℕ ∃𝑘 ∈ (ℤ𝑖)∀𝑚 ∈ (1...𝑁)(((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖))))
331191, 330syld 47 . . 3 (𝜑 → (¬ ran (𝑘 ∈ ℕ ↦ ((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))) ∈ Fin → ∃𝑐𝐼𝑖 ∈ ℕ ∃𝑘 ∈ (ℤ𝑖)∀𝑚 ∈ (1...𝑁)(((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖))))
332145, 331pm2.61d 181 . 2 (𝜑 → ∃𝑐𝐼𝑖 ∈ ℕ ∃𝑘 ∈ (ℤ𝑖)∀𝑚 ∈ (1...𝑁)(((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)))
333 poimir.0 . . . 4 (𝜑𝑁 ∈ ℕ)
334 poimir.1 . . . 4 (𝜑𝐹 ∈ ((𝑅t 𝐼) Cn 𝑅))
335 poimirlem30.x . . . 4 𝑋 = ((𝐹‘(((1st ‘(𝐺𝑘)) ∘f + ((((2nd ‘(𝐺𝑘)) “ (1...𝑗)) × {1}) ∪ (((2nd ‘(𝐺𝑘)) “ ((𝑗 + 1)...𝑁)) × {0}))) ∘f / ((1...𝑁) × {𝑘})))‘𝑛)
336 poimirlem30.4 . . . 4 ((𝜑 ∧ (𝑘 ∈ ℕ ∧ 𝑛 ∈ (1...𝑁) ∧ 𝑟 ∈ { ≤ , ≤ })) → ∃𝑗 ∈ (0...𝑁)0𝑟𝑋)
337333, 46, 146, 334, 335, 32, 37, 336poimirlem29 34936 . . 3 (𝜑 → (∀𝑖 ∈ ℕ ∃𝑘 ∈ (ℤ𝑖)∀𝑚 ∈ (1...𝑁)(((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) → ∀𝑛 ∈ (1...𝑁)∀𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 → ∀𝑟 ∈ { ≤ , ≤ }∃𝑧𝑣 0𝑟((𝐹𝑧)‘𝑛))))
338337reximdv 3273 . 2 (𝜑 → (∃𝑐𝐼𝑖 ∈ ℕ ∃𝑘 ∈ (ℤ𝑖)∀𝑚 ∈ (1...𝑁)(((1st ‘(𝐺𝑘)) ∘f / ((1...𝑁) × {𝑘}))‘𝑚) ∈ ((𝑐𝑚)(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))(1 / 𝑖)) → ∃𝑐𝐼𝑛 ∈ (1...𝑁)∀𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 → ∀𝑟 ∈ { ≤ , ≤ }∃𝑧𝑣 0𝑟((𝐹𝑧)‘𝑛))))
339332, 338mpd 15 1 (𝜑 → ∃𝑐𝐼𝑛 ∈ (1...𝑁)∀𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 → ∀𝑟 ∈ { ≤ , ≤ }∃𝑧𝑣 0𝑟((𝐹𝑧)‘𝑛)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083  wal 1535   = wceq 1537  wtru 1538  wex 1780  wcel 2114  {cab 2799  wne 3016  wral 3138  wrex 3139  {crab 3142  Vcvv 3494  cdif 3933  cun 3934  cin 3935  wss 3936  c0 4291  {csn 4567  {cpr 4569   cuni 4838   ciun 4919   class class class wbr 5066  cmpt 5146   × cxp 5553  ccnv 5554  dom cdm 5555  ran crn 5556  cres 5557  cima 5558  ccom 5559  Fun wfun 6349   Fn wfn 6350  wf 6351  1-1-ontowf1o 6354  cfv 6355  (class class class)co 7156  f cof 7407  ωcom 7580  1st c1st 7687  2nd c2nd 7688  m cmap 8406  Xcixp 8461  cen 8506  Fincfn 8509  cr 10536  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542  *cxr 10674   < clt 10675  cle 10676  cmin 10870   / cdiv 11297  cn 11638  0cn0 11898  cuz 12244  +crp 12390  (,)cioo 12739  [,]cicc 12742  ...cfz 12893  ..^cfzo 13034  abscabs 14593  t crest 16694  topGenctg 16711  tcpt 16712  ∞Metcxmet 20530  ballcbl 20532  MetOpencmopn 20535  Topctop 21501  Clsdccld 21624  limPtclp 21742   Cn ccn 21832  Frect1 21915  Hauscha 21916  Compccmp 21994  IIcii 23483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fi 8875  df-sup 8906  df-inf 8907  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ioo 12743  df-icc 12746  df-fz 12894  df-fzo 13035  df-fl 13163  df-seq 13371  df-exp 13431  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-rest 16696  df-topgen 16717  df-pt 16718  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-top 21502  df-topon 21519  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-lp 21744  df-cn 21835  df-cnp 21836  df-t1 21922  df-haus 21923  df-cmp 21995  df-tx 22170  df-hmeo 22363  df-hmph 22364  df-ii 23485
This theorem is referenced by:  poimirlem32  34939
  Copyright terms: Public domain W3C validator