MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz7.7 Structured version   Visualization version   GIF version

Theorem tz7.7 5708
Description: A transitive class belongs to an ordinal class iff it is strictly included in it. Proposition 7.7 of [TakeutiZaring] p. 37. (Contributed by NM, 5-May-1994.)
Assertion
Ref Expression
tz7.7 ((Ord 𝐴 ∧ Tr 𝐵) → (𝐵𝐴 ↔ (𝐵𝐴𝐵𝐴)))

Proof of Theorem tz7.7
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordtr 5696 . . . 4 (Ord 𝐴 → Tr 𝐴)
2 ordfr 5697 . . . 4 (Ord 𝐴 → E Fr 𝐴)
3 tz7.2 5058 . . . . 5 ((Tr 𝐴 ∧ E Fr 𝐴𝐵𝐴) → (𝐵𝐴𝐵𝐴))
433exp 1261 . . . 4 (Tr 𝐴 → ( E Fr 𝐴 → (𝐵𝐴 → (𝐵𝐴𝐵𝐴))))
51, 2, 4sylc 65 . . 3 (Ord 𝐴 → (𝐵𝐴 → (𝐵𝐴𝐵𝐴)))
65adantr 481 . 2 ((Ord 𝐴 ∧ Tr 𝐵) → (𝐵𝐴 → (𝐵𝐴𝐵𝐴)))
7 pssdifn0 3918 . . . . . 6 ((𝐵𝐴𝐵𝐴) → (𝐴𝐵) ≠ ∅)
8 difss 3715 . . . . . . . . . . . 12 (𝐴𝐵) ⊆ 𝐴
9 tz7.5 5703 . . . . . . . . . . . 12 ((Ord 𝐴 ∧ (𝐴𝐵) ⊆ 𝐴 ∧ (𝐴𝐵) ≠ ∅) → ∃𝑥 ∈ (𝐴𝐵)((𝐴𝐵) ∩ 𝑥) = ∅)
108, 9mp3an2 1409 . . . . . . . . . . 11 ((Ord 𝐴 ∧ (𝐴𝐵) ≠ ∅) → ∃𝑥 ∈ (𝐴𝐵)((𝐴𝐵) ∩ 𝑥) = ∅)
11 eldifi 3710 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝐴𝐵) → 𝑥𝐴)
12 trss 4721 . . . . . . . . . . . . . . . . . 18 (Tr 𝐴 → (𝑥𝐴𝑥𝐴))
13 difin0ss 3920 . . . . . . . . . . . . . . . . . . 19 (((𝐴𝐵) ∩ 𝑥) = ∅ → (𝑥𝐴𝑥𝐵))
1413com12 32 . . . . . . . . . . . . . . . . . 18 (𝑥𝐴 → (((𝐴𝐵) ∩ 𝑥) = ∅ → 𝑥𝐵))
1511, 12, 14syl56 36 . . . . . . . . . . . . . . . . 17 (Tr 𝐴 → (𝑥 ∈ (𝐴𝐵) → (((𝐴𝐵) ∩ 𝑥) = ∅ → 𝑥𝐵)))
161, 15syl 17 . . . . . . . . . . . . . . . 16 (Ord 𝐴 → (𝑥 ∈ (𝐴𝐵) → (((𝐴𝐵) ∩ 𝑥) = ∅ → 𝑥𝐵)))
1716ad2antrr 761 . . . . . . . . . . . . . . 15 (((Ord 𝐴 ∧ Tr 𝐵) ∧ 𝐵𝐴) → (𝑥 ∈ (𝐴𝐵) → (((𝐴𝐵) ∩ 𝑥) = ∅ → 𝑥𝐵)))
1817imp32 449 . . . . . . . . . . . . . 14 ((((Ord 𝐴 ∧ Tr 𝐵) ∧ 𝐵𝐴) ∧ (𝑥 ∈ (𝐴𝐵) ∧ ((𝐴𝐵) ∩ 𝑥) = ∅)) → 𝑥𝐵)
19 eleq1 2686 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 = 𝑥 → (𝑦𝐵𝑥𝐵))
2019biimpcd 239 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦𝐵 → (𝑦 = 𝑥𝑥𝐵))
21 eldifn 3711 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ (𝐴𝐵) → ¬ 𝑥𝐵)
2220, 21nsyli 155 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦𝐵 → (𝑥 ∈ (𝐴𝐵) → ¬ 𝑦 = 𝑥))
2322imp 445 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦𝐵𝑥 ∈ (𝐴𝐵)) → ¬ 𝑦 = 𝑥)
2423adantll 749 . . . . . . . . . . . . . . . . . . . . 21 (((𝐵𝐴𝑦𝐵) ∧ 𝑥 ∈ (𝐴𝐵)) → ¬ 𝑦 = 𝑥)
2524adantl 482 . . . . . . . . . . . . . . . . . . . 20 (((Ord 𝐴 ∧ Tr 𝐵) ∧ ((𝐵𝐴𝑦𝐵) ∧ 𝑥 ∈ (𝐴𝐵))) → ¬ 𝑦 = 𝑥)
26 trel 4719 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (Tr 𝐵 → ((𝑥𝑦𝑦𝐵) → 𝑥𝐵))
2726expcomd 454 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (Tr 𝐵 → (𝑦𝐵 → (𝑥𝑦𝑥𝐵)))
2827imp 445 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((Tr 𝐵𝑦𝐵) → (𝑥𝑦𝑥𝐵))
2928, 21nsyli 155 . . . . . . . . . . . . . . . . . . . . . . . 24 ((Tr 𝐵𝑦𝐵) → (𝑥 ∈ (𝐴𝐵) → ¬ 𝑥𝑦))
3029ex 450 . . . . . . . . . . . . . . . . . . . . . . 23 (Tr 𝐵 → (𝑦𝐵 → (𝑥 ∈ (𝐴𝐵) → ¬ 𝑥𝑦)))
3130adantld 483 . . . . . . . . . . . . . . . . . . . . . 22 (Tr 𝐵 → ((𝐵𝐴𝑦𝐵) → (𝑥 ∈ (𝐴𝐵) → ¬ 𝑥𝑦)))
3231imp32 449 . . . . . . . . . . . . . . . . . . . . 21 ((Tr 𝐵 ∧ ((𝐵𝐴𝑦𝐵) ∧ 𝑥 ∈ (𝐴𝐵))) → ¬ 𝑥𝑦)
3332adantll 749 . . . . . . . . . . . . . . . . . . . 20 (((Ord 𝐴 ∧ Tr 𝐵) ∧ ((𝐵𝐴𝑦𝐵) ∧ 𝑥 ∈ (𝐴𝐵))) → ¬ 𝑥𝑦)
34 ordwe 5695 . . . . . . . . . . . . . . . . . . . . . 22 (Ord 𝐴 → E We 𝐴)
35 ssel2 3578 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐵𝐴𝑦𝐵) → 𝑦𝐴)
3635, 11anim12i 589 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐵𝐴𝑦𝐵) ∧ 𝑥 ∈ (𝐴𝐵)) → (𝑦𝐴𝑥𝐴))
37 wecmpep 5066 . . . . . . . . . . . . . . . . . . . . . 22 (( E We 𝐴 ∧ (𝑦𝐴𝑥𝐴)) → (𝑦𝑥𝑦 = 𝑥𝑥𝑦))
3834, 36, 37syl2an 494 . . . . . . . . . . . . . . . . . . . . 21 ((Ord 𝐴 ∧ ((𝐵𝐴𝑦𝐵) ∧ 𝑥 ∈ (𝐴𝐵))) → (𝑦𝑥𝑦 = 𝑥𝑥𝑦))
3938adantlr 750 . . . . . . . . . . . . . . . . . . . 20 (((Ord 𝐴 ∧ Tr 𝐵) ∧ ((𝐵𝐴𝑦𝐵) ∧ 𝑥 ∈ (𝐴𝐵))) → (𝑦𝑥𝑦 = 𝑥𝑥𝑦))
4025, 33, 39ecase23d 1433 . . . . . . . . . . . . . . . . . . 19 (((Ord 𝐴 ∧ Tr 𝐵) ∧ ((𝐵𝐴𝑦𝐵) ∧ 𝑥 ∈ (𝐴𝐵))) → 𝑦𝑥)
4140exp44 640 . . . . . . . . . . . . . . . . . 18 ((Ord 𝐴 ∧ Tr 𝐵) → (𝐵𝐴 → (𝑦𝐵 → (𝑥 ∈ (𝐴𝐵) → 𝑦𝑥))))
4241com34 91 . . . . . . . . . . . . . . . . 17 ((Ord 𝐴 ∧ Tr 𝐵) → (𝐵𝐴 → (𝑥 ∈ (𝐴𝐵) → (𝑦𝐵𝑦𝑥))))
4342imp31 448 . . . . . . . . . . . . . . . 16 ((((Ord 𝐴 ∧ Tr 𝐵) ∧ 𝐵𝐴) ∧ 𝑥 ∈ (𝐴𝐵)) → (𝑦𝐵𝑦𝑥))
4443ssrdv 3589 . . . . . . . . . . . . . . 15 ((((Ord 𝐴 ∧ Tr 𝐵) ∧ 𝐵𝐴) ∧ 𝑥 ∈ (𝐴𝐵)) → 𝐵𝑥)
4544adantrr 752 . . . . . . . . . . . . . 14 ((((Ord 𝐴 ∧ Tr 𝐵) ∧ 𝐵𝐴) ∧ (𝑥 ∈ (𝐴𝐵) ∧ ((𝐴𝐵) ∩ 𝑥) = ∅)) → 𝐵𝑥)
4618, 45eqssd 3600 . . . . . . . . . . . . 13 ((((Ord 𝐴 ∧ Tr 𝐵) ∧ 𝐵𝐴) ∧ (𝑥 ∈ (𝐴𝐵) ∧ ((𝐴𝐵) ∩ 𝑥) = ∅)) → 𝑥 = 𝐵)
4711ad2antrl 763 . . . . . . . . . . . . 13 ((((Ord 𝐴 ∧ Tr 𝐵) ∧ 𝐵𝐴) ∧ (𝑥 ∈ (𝐴𝐵) ∧ ((𝐴𝐵) ∩ 𝑥) = ∅)) → 𝑥𝐴)
4846, 47eqeltrrd 2699 . . . . . . . . . . . 12 ((((Ord 𝐴 ∧ Tr 𝐵) ∧ 𝐵𝐴) ∧ (𝑥 ∈ (𝐴𝐵) ∧ ((𝐴𝐵) ∩ 𝑥) = ∅)) → 𝐵𝐴)
4948rexlimdvaa 3025 . . . . . . . . . . 11 (((Ord 𝐴 ∧ Tr 𝐵) ∧ 𝐵𝐴) → (∃𝑥 ∈ (𝐴𝐵)((𝐴𝐵) ∩ 𝑥) = ∅ → 𝐵𝐴))
5010, 49syl5 34 . . . . . . . . . 10 (((Ord 𝐴 ∧ Tr 𝐵) ∧ 𝐵𝐴) → ((Ord 𝐴 ∧ (𝐴𝐵) ≠ ∅) → 𝐵𝐴))
5150exp4b 631 . . . . . . . . 9 ((Ord 𝐴 ∧ Tr 𝐵) → (𝐵𝐴 → (Ord 𝐴 → ((𝐴𝐵) ≠ ∅ → 𝐵𝐴))))
5251com23 86 . . . . . . . 8 ((Ord 𝐴 ∧ Tr 𝐵) → (Ord 𝐴 → (𝐵𝐴 → ((𝐴𝐵) ≠ ∅ → 𝐵𝐴))))
5352adantrd 484 . . . . . . 7 ((Ord 𝐴 ∧ Tr 𝐵) → ((Ord 𝐴 ∧ Tr 𝐵) → (𝐵𝐴 → ((𝐴𝐵) ≠ ∅ → 𝐵𝐴))))
5453pm2.43i 52 . . . . . 6 ((Ord 𝐴 ∧ Tr 𝐵) → (𝐵𝐴 → ((𝐴𝐵) ≠ ∅ → 𝐵𝐴)))
557, 54syl7 74 . . . . 5 ((Ord 𝐴 ∧ Tr 𝐵) → (𝐵𝐴 → ((𝐵𝐴𝐵𝐴) → 𝐵𝐴)))
5655exp4a 632 . . . 4 ((Ord 𝐴 ∧ Tr 𝐵) → (𝐵𝐴 → (𝐵𝐴 → (𝐵𝐴𝐵𝐴))))
5756pm2.43d 53 . . 3 ((Ord 𝐴 ∧ Tr 𝐵) → (𝐵𝐴 → (𝐵𝐴𝐵𝐴)))
5857impd 447 . 2 ((Ord 𝐴 ∧ Tr 𝐵) → ((𝐵𝐴𝐵𝐴) → 𝐵𝐴))
596, 58impbid 202 1 ((Ord 𝐴 ∧ Tr 𝐵) → (𝐵𝐴 ↔ (𝐵𝐴𝐵𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3o 1035   = wceq 1480  wcel 1987  wne 2790  wrex 2908  cdif 3552  cin 3554  wss 3555  c0 3891  Tr wtr 4712   E cep 4983   Fr wfr 5030   We wwe 5032  Ord word 5681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pr 4867
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-tr 4713  df-eprel 4985  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-ord 5685
This theorem is referenced by:  ordelssne  5709  dfon2  31395
  Copyright terms: Public domain W3C validator