MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uneqdifeq Structured version   Visualization version   GIF version

Theorem uneqdifeq 4440
Description: Two ways to say that 𝐴 and 𝐵 partition 𝐶 (when 𝐴 and 𝐵 don't overlap and 𝐴 is a part of 𝐶). (Contributed by FL, 17-Nov-2008.) (Proof shortened by JJ, 14-Jul-2021.)
Assertion
Ref Expression
uneqdifeq ((𝐴𝐶 ∧ (𝐴𝐵) = ∅) → ((𝐴𝐵) = 𝐶 ↔ (𝐶𝐴) = 𝐵))

Proof of Theorem uneqdifeq
StepHypRef Expression
1 uncom 4131 . . . . 5 (𝐵𝐴) = (𝐴𝐵)
2 eqtr 2843 . . . . . . 7 (((𝐵𝐴) = (𝐴𝐵) ∧ (𝐴𝐵) = 𝐶) → (𝐵𝐴) = 𝐶)
32eqcomd 2829 . . . . . 6 (((𝐵𝐴) = (𝐴𝐵) ∧ (𝐴𝐵) = 𝐶) → 𝐶 = (𝐵𝐴))
4 difeq1 4094 . . . . . . 7 (𝐶 = (𝐵𝐴) → (𝐶𝐴) = ((𝐵𝐴) ∖ 𝐴))
5 difun2 4431 . . . . . . 7 ((𝐵𝐴) ∖ 𝐴) = (𝐵𝐴)
6 eqtr 2843 . . . . . . . 8 (((𝐶𝐴) = ((𝐵𝐴) ∖ 𝐴) ∧ ((𝐵𝐴) ∖ 𝐴) = (𝐵𝐴)) → (𝐶𝐴) = (𝐵𝐴))
7 incom 4180 . . . . . . . . . . 11 (𝐴𝐵) = (𝐵𝐴)
87eqeq1i 2828 . . . . . . . . . 10 ((𝐴𝐵) = ∅ ↔ (𝐵𝐴) = ∅)
9 disj3 4405 . . . . . . . . . 10 ((𝐵𝐴) = ∅ ↔ 𝐵 = (𝐵𝐴))
108, 9bitri 277 . . . . . . . . 9 ((𝐴𝐵) = ∅ ↔ 𝐵 = (𝐵𝐴))
11 eqtr 2843 . . . . . . . . . . 11 (((𝐶𝐴) = (𝐵𝐴) ∧ (𝐵𝐴) = 𝐵) → (𝐶𝐴) = 𝐵)
1211expcom 416 . . . . . . . . . 10 ((𝐵𝐴) = 𝐵 → ((𝐶𝐴) = (𝐵𝐴) → (𝐶𝐴) = 𝐵))
1312eqcoms 2831 . . . . . . . . 9 (𝐵 = (𝐵𝐴) → ((𝐶𝐴) = (𝐵𝐴) → (𝐶𝐴) = 𝐵))
1410, 13sylbi 219 . . . . . . . 8 ((𝐴𝐵) = ∅ → ((𝐶𝐴) = (𝐵𝐴) → (𝐶𝐴) = 𝐵))
156, 14syl5com 31 . . . . . . 7 (((𝐶𝐴) = ((𝐵𝐴) ∖ 𝐴) ∧ ((𝐵𝐴) ∖ 𝐴) = (𝐵𝐴)) → ((𝐴𝐵) = ∅ → (𝐶𝐴) = 𝐵))
164, 5, 15sylancl 588 . . . . . 6 (𝐶 = (𝐵𝐴) → ((𝐴𝐵) = ∅ → (𝐶𝐴) = 𝐵))
173, 16syl 17 . . . . 5 (((𝐵𝐴) = (𝐴𝐵) ∧ (𝐴𝐵) = 𝐶) → ((𝐴𝐵) = ∅ → (𝐶𝐴) = 𝐵))
181, 17mpan 688 . . . 4 ((𝐴𝐵) = 𝐶 → ((𝐴𝐵) = ∅ → (𝐶𝐴) = 𝐵))
1918com12 32 . . 3 ((𝐴𝐵) = ∅ → ((𝐴𝐵) = 𝐶 → (𝐶𝐴) = 𝐵))
2019adantl 484 . 2 ((𝐴𝐶 ∧ (𝐴𝐵) = ∅) → ((𝐴𝐵) = 𝐶 → (𝐶𝐴) = 𝐵))
21 simpl 485 . . . . . 6 ((𝐴𝐶 ∧ (𝐶𝐴) = 𝐵) → 𝐴𝐶)
22 difssd 4111 . . . . . . . 8 ((𝐶𝐴) = 𝐵 → (𝐶𝐴) ⊆ 𝐶)
23 sseq1 3994 . . . . . . . 8 ((𝐶𝐴) = 𝐵 → ((𝐶𝐴) ⊆ 𝐶𝐵𝐶))
2422, 23mpbid 234 . . . . . . 7 ((𝐶𝐴) = 𝐵𝐵𝐶)
2524adantl 484 . . . . . 6 ((𝐴𝐶 ∧ (𝐶𝐴) = 𝐵) → 𝐵𝐶)
2621, 25unssd 4164 . . . . 5 ((𝐴𝐶 ∧ (𝐶𝐴) = 𝐵) → (𝐴𝐵) ⊆ 𝐶)
27 eqimss 4025 . . . . . . 7 ((𝐶𝐴) = 𝐵 → (𝐶𝐴) ⊆ 𝐵)
28 ssundif 4435 . . . . . . 7 (𝐶 ⊆ (𝐴𝐵) ↔ (𝐶𝐴) ⊆ 𝐵)
2927, 28sylibr 236 . . . . . 6 ((𝐶𝐴) = 𝐵𝐶 ⊆ (𝐴𝐵))
3029adantl 484 . . . . 5 ((𝐴𝐶 ∧ (𝐶𝐴) = 𝐵) → 𝐶 ⊆ (𝐴𝐵))
3126, 30eqssd 3986 . . . 4 ((𝐴𝐶 ∧ (𝐶𝐴) = 𝐵) → (𝐴𝐵) = 𝐶)
3231ex 415 . . 3 (𝐴𝐶 → ((𝐶𝐴) = 𝐵 → (𝐴𝐵) = 𝐶))
3332adantr 483 . 2 ((𝐴𝐶 ∧ (𝐴𝐵) = ∅) → ((𝐶𝐴) = 𝐵 → (𝐴𝐵) = 𝐶))
3420, 33impbid 214 1 ((𝐴𝐶 ∧ (𝐴𝐵) = ∅) → ((𝐴𝐵) = 𝐶 ↔ (𝐶𝐴) = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  cdif 3935  cun 3936  cin 3937  wss 3938  c0 4293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rab 3149  df-v 3498  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294
This theorem is referenced by:  fzdifsuc  12970  hashbclem  13813  lecldbas  21829  conndisj  22026  ptuncnv  22417  ptunhmeo  22418  cldsubg  22721  icopnfcld  23378  iocmnfcld  23379  voliunlem1  24153  icombl  24167  ioombl  24168  uniioombllem4  24189  ismbf3d  24257  lhop  24615  symgcom  30729  f1resfz0f1d  32363  subfacp1lem3  32431  subfacp1lem5  32433  pconnconn  32480  cvmscld  32522
  Copyright terms: Public domain W3C validator