Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmscld Structured version   Visualization version   GIF version

Theorem cvmscld 32522
Description: The sets of an even covering are clopen in the subspace topology on 𝑇. (Contributed by Mario Carneiro, 14-Feb-2015.)
Hypothesis
Ref Expression
cvmcov.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
Assertion
Ref Expression
cvmscld ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → 𝐴 ∈ (Clsd‘(𝐶t (𝐹𝑈))))
Distinct variable groups:   𝑘,𝑠,𝑢,𝑣,𝐶   𝑘,𝐹,𝑠,𝑢,𝑣   𝑘,𝐽,𝑠,𝑢,𝑣   𝑈,𝑘,𝑠,𝑢,𝑣   𝑇,𝑠,𝑢,𝑣   𝑢,𝐴,𝑣
Allowed substitution hints:   𝐴(𝑘,𝑠)   𝑆(𝑣,𝑢,𝑘,𝑠)   𝑇(𝑘)

Proof of Theorem cvmscld
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cvmtop1 32509 . . . . . 6 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐶 ∈ Top)
213ad2ant1 1129 . . . . 5 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → 𝐶 ∈ Top)
3 cvmcov.1 . . . . . . . 8 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
43cvmsuni 32518 . . . . . . 7 (𝑇 ∈ (𝑆𝑈) → 𝑇 = (𝐹𝑈))
543ad2ant2 1130 . . . . . 6 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → 𝑇 = (𝐹𝑈))
63cvmsss 32516 . . . . . . . 8 (𝑇 ∈ (𝑆𝑈) → 𝑇𝐶)
763ad2ant2 1130 . . . . . . 7 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → 𝑇𝐶)
87unissd 4850 . . . . . 6 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → 𝑇 𝐶)
95, 8eqsstrrd 4008 . . . . 5 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → (𝐹𝑈) ⊆ 𝐶)
10 eqid 2823 . . . . . 6 𝐶 = 𝐶
1110restuni 21772 . . . . 5 ((𝐶 ∈ Top ∧ (𝐹𝑈) ⊆ 𝐶) → (𝐹𝑈) = (𝐶t (𝐹𝑈)))
122, 9, 11syl2anc 586 . . . 4 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → (𝐹𝑈) = (𝐶t (𝐹𝑈)))
1312difeq1d 4100 . . 3 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → ((𝐹𝑈) ∖ (𝑇 ∖ {𝐴})) = ( (𝐶t (𝐹𝑈)) ∖ (𝑇 ∖ {𝐴})))
14 unisng 4859 . . . . . . 7 (𝐴𝑇 {𝐴} = 𝐴)
15143ad2ant3 1131 . . . . . 6 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → {𝐴} = 𝐴)
1615uneq2d 4141 . . . . 5 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → ( (𝑇 ∖ {𝐴}) ∪ {𝐴}) = ( (𝑇 ∖ {𝐴}) ∪ 𝐴))
17 uniun 4863 . . . . . 6 ((𝑇 ∖ {𝐴}) ∪ {𝐴}) = ( (𝑇 ∖ {𝐴}) ∪ {𝐴})
18 undif1 4426 . . . . . . . . 9 ((𝑇 ∖ {𝐴}) ∪ {𝐴}) = (𝑇 ∪ {𝐴})
19 simp3 1134 . . . . . . . . . . 11 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → 𝐴𝑇)
2019snssd 4744 . . . . . . . . . 10 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → {𝐴} ⊆ 𝑇)
21 ssequn2 4161 . . . . . . . . . 10 ({𝐴} ⊆ 𝑇 ↔ (𝑇 ∪ {𝐴}) = 𝑇)
2220, 21sylib 220 . . . . . . . . 9 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → (𝑇 ∪ {𝐴}) = 𝑇)
2318, 22syl5eq 2870 . . . . . . . 8 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → ((𝑇 ∖ {𝐴}) ∪ {𝐴}) = 𝑇)
2423unieqd 4854 . . . . . . 7 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → ((𝑇 ∖ {𝐴}) ∪ {𝐴}) = 𝑇)
2524, 5eqtrd 2858 . . . . . 6 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → ((𝑇 ∖ {𝐴}) ∪ {𝐴}) = (𝐹𝑈))
2617, 25syl5eqr 2872 . . . . 5 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → ( (𝑇 ∖ {𝐴}) ∪ {𝐴}) = (𝐹𝑈))
2716, 26eqtr3d 2860 . . . 4 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → ( (𝑇 ∖ {𝐴}) ∪ 𝐴) = (𝐹𝑈))
28 difss 4110 . . . . . . 7 (𝑇 ∖ {𝐴}) ⊆ 𝑇
2928unissi 4849 . . . . . 6 (𝑇 ∖ {𝐴}) ⊆ 𝑇
3029, 5sseqtrid 4021 . . . . 5 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → (𝑇 ∖ {𝐴}) ⊆ (𝐹𝑈))
31 uniiun 4984 . . . . . . . 8 (𝑇 ∖ {𝐴}) = 𝑥 ∈ (𝑇 ∖ {𝐴})𝑥
3231ineq2i 4188 . . . . . . 7 (𝐴 (𝑇 ∖ {𝐴})) = (𝐴 𝑥 ∈ (𝑇 ∖ {𝐴})𝑥)
33 incom 4180 . . . . . . 7 ( (𝑇 ∖ {𝐴}) ∩ 𝐴) = (𝐴 (𝑇 ∖ {𝐴}))
34 iunin2 4995 . . . . . . 7 𝑥 ∈ (𝑇 ∖ {𝐴})(𝐴𝑥) = (𝐴 𝑥 ∈ (𝑇 ∖ {𝐴})𝑥)
3532, 33, 343eqtr4i 2856 . . . . . 6 ( (𝑇 ∖ {𝐴}) ∩ 𝐴) = 𝑥 ∈ (𝑇 ∖ {𝐴})(𝐴𝑥)
36 eldifsn 4721 . . . . . . . . . 10 (𝑥 ∈ (𝑇 ∖ {𝐴}) ↔ (𝑥𝑇𝑥𝐴))
37 nesym 3074 . . . . . . . . . . . 12 (𝑥𝐴 ↔ ¬ 𝐴 = 𝑥)
383cvmsdisj 32519 . . . . . . . . . . . . . 14 ((𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇𝑥𝑇) → (𝐴 = 𝑥 ∨ (𝐴𝑥) = ∅))
39383expa 1114 . . . . . . . . . . . . 13 (((𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) ∧ 𝑥𝑇) → (𝐴 = 𝑥 ∨ (𝐴𝑥) = ∅))
4039ord 860 . . . . . . . . . . . 12 (((𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) ∧ 𝑥𝑇) → (¬ 𝐴 = 𝑥 → (𝐴𝑥) = ∅))
4137, 40syl5bi 244 . . . . . . . . . . 11 (((𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) ∧ 𝑥𝑇) → (𝑥𝐴 → (𝐴𝑥) = ∅))
4241impr 457 . . . . . . . . . 10 (((𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) ∧ (𝑥𝑇𝑥𝐴)) → (𝐴𝑥) = ∅)
4336, 42sylan2b 595 . . . . . . . . 9 (((𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) ∧ 𝑥 ∈ (𝑇 ∖ {𝐴})) → (𝐴𝑥) = ∅)
4443iuneq2dv 4945 . . . . . . . 8 ((𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → 𝑥 ∈ (𝑇 ∖ {𝐴})(𝐴𝑥) = 𝑥 ∈ (𝑇 ∖ {𝐴})∅)
45443adant1 1126 . . . . . . 7 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → 𝑥 ∈ (𝑇 ∖ {𝐴})(𝐴𝑥) = 𝑥 ∈ (𝑇 ∖ {𝐴})∅)
46 iun0 4987 . . . . . . 7 𝑥 ∈ (𝑇 ∖ {𝐴})∅ = ∅
4745, 46syl6eq 2874 . . . . . 6 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → 𝑥 ∈ (𝑇 ∖ {𝐴})(𝐴𝑥) = ∅)
4835, 47syl5eq 2870 . . . . 5 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → ( (𝑇 ∖ {𝐴}) ∩ 𝐴) = ∅)
49 uneqdifeq 4440 . . . . 5 (( (𝑇 ∖ {𝐴}) ⊆ (𝐹𝑈) ∧ ( (𝑇 ∖ {𝐴}) ∩ 𝐴) = ∅) → (( (𝑇 ∖ {𝐴}) ∪ 𝐴) = (𝐹𝑈) ↔ ((𝐹𝑈) ∖ (𝑇 ∖ {𝐴})) = 𝐴))
5030, 48, 49syl2anc 586 . . . 4 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → (( (𝑇 ∖ {𝐴}) ∪ 𝐴) = (𝐹𝑈) ↔ ((𝐹𝑈) ∖ (𝑇 ∖ {𝐴})) = 𝐴))
5127, 50mpbid 234 . . 3 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → ((𝐹𝑈) ∖ (𝑇 ∖ {𝐴})) = 𝐴)
5213, 51eqtr3d 2860 . 2 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → ( (𝐶t (𝐹𝑈)) ∖ (𝑇 ∖ {𝐴})) = 𝐴)
53 uniexg 7468 . . . . . 6 (𝑇 ∈ (𝑆𝑈) → 𝑇 ∈ V)
54533ad2ant2 1130 . . . . 5 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → 𝑇 ∈ V)
555, 54eqeltrrd 2916 . . . 4 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → (𝐹𝑈) ∈ V)
56 resttop 21770 . . . 4 ((𝐶 ∈ Top ∧ (𝐹𝑈) ∈ V) → (𝐶t (𝐹𝑈)) ∈ Top)
572, 55, 56syl2anc 586 . . 3 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → (𝐶t (𝐹𝑈)) ∈ Top)
58 elssuni 4870 . . . . . . . . . . 11 (𝑥𝑇𝑥 𝑇)
5958adantl 484 . . . . . . . . . 10 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) ∧ 𝑥𝑇) → 𝑥 𝑇)
605adantr 483 . . . . . . . . . 10 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) ∧ 𝑥𝑇) → 𝑇 = (𝐹𝑈))
6159, 60sseqtrd 4009 . . . . . . . . 9 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) ∧ 𝑥𝑇) → 𝑥 ⊆ (𝐹𝑈))
62 df-ss 3954 . . . . . . . . 9 (𝑥 ⊆ (𝐹𝑈) ↔ (𝑥 ∩ (𝐹𝑈)) = 𝑥)
6361, 62sylib 220 . . . . . . . 8 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) ∧ 𝑥𝑇) → (𝑥 ∩ (𝐹𝑈)) = 𝑥)
642adantr 483 . . . . . . . . 9 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) ∧ 𝑥𝑇) → 𝐶 ∈ Top)
6555adantr 483 . . . . . . . . 9 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) ∧ 𝑥𝑇) → (𝐹𝑈) ∈ V)
667sselda 3969 . . . . . . . . 9 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) ∧ 𝑥𝑇) → 𝑥𝐶)
67 elrestr 16704 . . . . . . . . 9 ((𝐶 ∈ Top ∧ (𝐹𝑈) ∈ V ∧ 𝑥𝐶) → (𝑥 ∩ (𝐹𝑈)) ∈ (𝐶t (𝐹𝑈)))
6864, 65, 66, 67syl3anc 1367 . . . . . . . 8 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) ∧ 𝑥𝑇) → (𝑥 ∩ (𝐹𝑈)) ∈ (𝐶t (𝐹𝑈)))
6963, 68eqeltrrd 2916 . . . . . . 7 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) ∧ 𝑥𝑇) → 𝑥 ∈ (𝐶t (𝐹𝑈)))
7069ex 415 . . . . . 6 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → (𝑥𝑇𝑥 ∈ (𝐶t (𝐹𝑈))))
7170ssrdv 3975 . . . . 5 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → 𝑇 ⊆ (𝐶t (𝐹𝑈)))
7271ssdifssd 4121 . . . 4 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → (𝑇 ∖ {𝐴}) ⊆ (𝐶t (𝐹𝑈)))
73 uniopn 21507 . . . 4 (((𝐶t (𝐹𝑈)) ∈ Top ∧ (𝑇 ∖ {𝐴}) ⊆ (𝐶t (𝐹𝑈))) → (𝑇 ∖ {𝐴}) ∈ (𝐶t (𝐹𝑈)))
7457, 72, 73syl2anc 586 . . 3 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → (𝑇 ∖ {𝐴}) ∈ (𝐶t (𝐹𝑈)))
75 eqid 2823 . . . 4 (𝐶t (𝐹𝑈)) = (𝐶t (𝐹𝑈))
7675opncld 21643 . . 3 (((𝐶t (𝐹𝑈)) ∈ Top ∧ (𝑇 ∖ {𝐴}) ∈ (𝐶t (𝐹𝑈))) → ( (𝐶t (𝐹𝑈)) ∖ (𝑇 ∖ {𝐴})) ∈ (Clsd‘(𝐶t (𝐹𝑈))))
7757, 74, 76syl2anc 586 . 2 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → ( (𝐶t (𝐹𝑈)) ∖ (𝑇 ∖ {𝐴})) ∈ (Clsd‘(𝐶t (𝐹𝑈))))
7852, 77eqeltrrd 2916 1 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → 𝐴 ∈ (Clsd‘(𝐶t (𝐹𝑈))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  wne 3018  wral 3140  {crab 3144  Vcvv 3496  cdif 3935  cun 3936  cin 3937  wss 3938  c0 4293  𝒫 cpw 4541  {csn 4569   cuni 4840   ciun 4921  cmpt 5148  ccnv 5556  cres 5559  cima 5560  cfv 6357  (class class class)co 7158  t crest 16696  Topctop 21503  Clsdccld 21626  Homeochmeo 22363   CovMap ccvm 32504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-oadd 8108  df-er 8291  df-en 8512  df-fin 8515  df-fi 8877  df-rest 16698  df-topgen 16719  df-top 21504  df-topon 21521  df-bases 21556  df-cld 21629  df-cvm 32505
This theorem is referenced by:  cvmliftmolem1  32530  cvmlift2lem9  32560  cvmlift3lem6  32573
  Copyright terms: Public domain W3C validator